Stochastic systems /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1983.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 169. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 1 online resource (xvii, 331 pages) |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780080956756 0080956750 1282290339 9781282290334 0120443708 9780120443703 9786612290336 6612290331 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316564070 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1983 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OCLCE |d E7B |d OCLCQ |d OPELS |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d YDXCP |d OCLCQ |d COO |d OCLCQ |d HEBIS |d OCLCO |d OCLCA |d DEBSZ |d OCLCQ |d VTS |d STF |d OCLCQ |d K6U |d LEAUB |d M8D |d VLY |d LUN |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 300906406 |a 643823518 |a 823843617 |a 823912377 |a 824099388 |a 824154811 |a 1086544714 |a 1162556219 |a 1241793455 |a 1300581587 | ||
020 | |a 9780080956756 |q (electronic bk.) | ||
020 | |a 0080956750 |q (electronic bk.) | ||
020 | |a 1282290339 | ||
020 | |a 9781282290334 | ||
020 | |a 0120443708 | ||
020 | |a 9780120443703 | ||
020 | |a 9786612290336 | ||
020 | |a 6612290331 | ||
020 | |z 9780444517968 | ||
020 | |z 9780120443703 | ||
020 | |z 0120443708 | ||
024 | 3 | |a 9780120443703 | |
035 | |a (OCoLC)316564070 |z (OCoLC)300906406 |z (OCoLC)643823518 |z (OCoLC)823843617 |z (OCoLC)823912377 |z (OCoLC)824099388 |z (OCoLC)824154811 |z (OCoLC)1086544714 |z (OCoLC)1162556219 |z (OCoLC)1241793455 |z (OCoLC)1300581587 | ||
042 | |a dlr | ||
050 | 4 | |a QA274.23 |b .A36 1983eb | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
072 | 7 | |a GPF |2 bicssc | |
082 | 7 | |a 519.2 |2 22 | |
084 | |a SK 820 |2 rvk | ||
084 | |a MAT 606f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Adomian, G. |0 http://id.loc.gov/authorities/names/n80091498 | |
245 | 1 | 0 | |a Stochastic systems / |c George Adomian. |
260 | |a New York : |b Academic Press, |c 1983. | ||
300 | |a 1 online resource (xvii, 331 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 169 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
505 | 0 | |a Front Cover; Stochastic Systems; Copyright Page; Contents; Foreword; Preface; Chapter 1. Green's Functions and Systems Theory; 1.1. Introduction: Some Remarks on the Mathematical Modeling of Dynamical Systems; 1.2. Linearity and Superposition; 1.3. The Concept of a Green's Function; 1.4. Simple Input-Output Systems and Green's Functions; 1.5. Operator Forms; 1.6. Green's Function for the Inhomogeneous Sturm-Liouville Operator; 1.7. Properties of the Green's Function; 1.8. Evaluation of the Wronskian; 1.9. Solution Using Abel's Formula | |
505 | 8 | |a 1.10. Use of Green's Function to Solve the Inhomogeneous Equation1.11. Adjoint Operators; 1.12. Green's Functions for Adjoint Operators; 1.13. Symbolic Functions; 1.14. Sturm-Liouville Differential Equation; 1.15. Boundary Conditions Specified on a Finite Interval [a, b]; 1.16. Series Expansions for G(x,?); 1.17. Multiple-Input-Multiple-Output Systems; 1.18. Bilinear Form of the Green's Function; 1.19. Bilinear Form of the Green's Function for the Sturm-Liouville Differential Equation; 1.20. Cases Where the Green's Function Does Not Exist; 1.21. Multidimensional Green's Functions | |
505 | 8 | |a 1.22. Green's Functions for Initial Conditions1.23. Approximate Calculation of Green's Functions; References; Chapter 2. A Basic Review of the Theory of Stochastic Processes; 2.1. The Nature of a Stochastic Process; 2.2. Stochastic Processes-Basic Definitions; 2.3. Characterization and Classification of Stochastic Processes; 2.4. Consistency Conditions on the Distribution; 2.5. Some Simple Stochastic Processes; 2.6. Time Dependences of Distributions; 2.7. Statistical Measures of Stochastic Processes; 2.8. Random Fields; 2.9. The Calculus of Stochastic Processes | |
505 | 8 | |a 2.10. Expansions of Random Functions2.11. Ergodic Theorems; 2.12. Generalized Random Processes; References; Chapter 3. Stochastic Operators and Stochastic Systems; 3.1. Stochastic Systems-Basic Concepts; 3.2. Stochastic Green's Functions; 3.3. Statistical Operators; 3.4. Stochastic Green's Theorem; 3.5. Determination of the Kernel from the Physical Process; References; Chapter 4. Linear Stochastic Differential Equations; 4.1. Stochastic Differential Operators; 4.2. The Differential Equation Formulation; 4.3. Derivation of Stochastic Green's Theorem; 4.4. Hierarchy or Averaging Method | |
505 | 8 | |a 4.5. Perturbation Theory4.6. Connection between Perturbation Theory and the Hierarchy Method; 4.7. The Decomposition Method; 4.8. Differential Operator with One Random Coefficient; 4.9. A Convenient Resolvent Kernel Formulation; 4.10. Inverse Operator Form of the Decomposition Method Solution; 4.11. Some Further Remarks on the Operator Identity (4.10.1); 4.12. General Form of the Stochastic Green's Function; 4.13. Random Initial Conditions; 4.14. Simplifying Green's Function Calculations for Higher Order Equations; References; Chapter 5. Nonlinear Stochastic Differential Equations | |
546 | |a English. | ||
650 | 0 | |a Stochastic differential equations. |0 http://id.loc.gov/authorities/subjects/sh85128177 | |
650 | 0 | |a Stochastic systems. |0 http://id.loc.gov/authorities/subjects/sh85128185 | |
650 | 6 | |a Équations différentielles stochastiques. | |
650 | 6 | |a Systèmes stochastiques. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Stochastic differential equations |2 fast | |
650 | 7 | |a Stochastic systems |2 fast | |
650 | 7 | |a Stochastische Differentialgleichung |2 gnd | |
650 | 7 | |a Stochastisches System |2 gnd |0 http://d-nb.info/gnd/4057635-8 | |
758 | |i has work: |a Stochastic systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGTyBbdvXCKjCtF7kbdjT3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Adomian, G. |t Stochastic systems. |d New York : Academic Press, ©1983 |z 9780120443703 |w (DLC) 82016392 |w (OCoLC)8786046 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 169. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/169 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=296979 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL452907 | ||
938 | |a ebrary |b EBRY |n ebr10329419 | ||
938 | |a EBSCOhost |b EBSC |n 296979 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 229033 | ||
938 | |a YBP Library Services |b YANK |n 3101869 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316564070 |
---|---|
_version_ | 1816881689244205056 |
adam_text | |
any_adam_object | |
author | Adomian, G. |
author_GND | http://id.loc.gov/authorities/names/n80091498 |
author_facet | Adomian, G. |
author_role | |
author_sort | Adomian, G. |
author_variant | g a ga |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.23 .A36 1983eb |
callnumber-search | QA274.23 .A36 1983eb |
callnumber-sort | QA 3274.23 A36 41983EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 |
classification_tum | MAT 606f |
collection | ZDB-4-EBA |
contents | Front Cover; Stochastic Systems; Copyright Page; Contents; Foreword; Preface; Chapter 1. Green's Functions and Systems Theory; 1.1. Introduction: Some Remarks on the Mathematical Modeling of Dynamical Systems; 1.2. Linearity and Superposition; 1.3. The Concept of a Green's Function; 1.4. Simple Input-Output Systems and Green's Functions; 1.5. Operator Forms; 1.6. Green's Function for the Inhomogeneous Sturm-Liouville Operator; 1.7. Properties of the Green's Function; 1.8. Evaluation of the Wronskian; 1.9. Solution Using Abel's Formula 1.10. Use of Green's Function to Solve the Inhomogeneous Equation1.11. Adjoint Operators; 1.12. Green's Functions for Adjoint Operators; 1.13. Symbolic Functions; 1.14. Sturm-Liouville Differential Equation; 1.15. Boundary Conditions Specified on a Finite Interval [a, b]; 1.16. Series Expansions for G(x,?); 1.17. Multiple-Input-Multiple-Output Systems; 1.18. Bilinear Form of the Green's Function; 1.19. Bilinear Form of the Green's Function for the Sturm-Liouville Differential Equation; 1.20. Cases Where the Green's Function Does Not Exist; 1.21. Multidimensional Green's Functions 1.22. Green's Functions for Initial Conditions1.23. Approximate Calculation of Green's Functions; References; Chapter 2. A Basic Review of the Theory of Stochastic Processes; 2.1. The Nature of a Stochastic Process; 2.2. Stochastic Processes-Basic Definitions; 2.3. Characterization and Classification of Stochastic Processes; 2.4. Consistency Conditions on the Distribution; 2.5. Some Simple Stochastic Processes; 2.6. Time Dependences of Distributions; 2.7. Statistical Measures of Stochastic Processes; 2.8. Random Fields; 2.9. The Calculus of Stochastic Processes 2.10. Expansions of Random Functions2.11. Ergodic Theorems; 2.12. Generalized Random Processes; References; Chapter 3. Stochastic Operators and Stochastic Systems; 3.1. Stochastic Systems-Basic Concepts; 3.2. Stochastic Green's Functions; 3.3. Statistical Operators; 3.4. Stochastic Green's Theorem; 3.5. Determination of the Kernel from the Physical Process; References; Chapter 4. Linear Stochastic Differential Equations; 4.1. Stochastic Differential Operators; 4.2. The Differential Equation Formulation; 4.3. Derivation of Stochastic Green's Theorem; 4.4. Hierarchy or Averaging Method 4.5. Perturbation Theory4.6. Connection between Perturbation Theory and the Hierarchy Method; 4.7. The Decomposition Method; 4.8. Differential Operator with One Random Coefficient; 4.9. A Convenient Resolvent Kernel Formulation; 4.10. Inverse Operator Form of the Decomposition Method Solution; 4.11. Some Further Remarks on the Operator Identity (4.10.1); 4.12. General Form of the Stochastic Green's Function; 4.13. Random Initial Conditions; 4.14. Simplifying Green's Function Calculations for Higher Order Equations; References; Chapter 5. Nonlinear Stochastic Differential Equations |
ctrlnum | (OCoLC)316564070 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06958cam a2200853 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316564070</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1983 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCE</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCA</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">VLY</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">300906406</subfield><subfield code="a">643823518</subfield><subfield code="a">823843617</subfield><subfield code="a">823912377</subfield><subfield code="a">824099388</subfield><subfield code="a">824154811</subfield><subfield code="a">1086544714</subfield><subfield code="a">1162556219</subfield><subfield code="a">1241793455</subfield><subfield code="a">1300581587</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956756</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956750</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282290339</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282290334</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120443708</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120443703</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612290336</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612290331</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780444517968</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780120443703</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0120443708</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780120443703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316564070</subfield><subfield code="z">(OCoLC)300906406</subfield><subfield code="z">(OCoLC)643823518</subfield><subfield code="z">(OCoLC)823843617</subfield><subfield code="z">(OCoLC)823912377</subfield><subfield code="z">(OCoLC)824099388</subfield><subfield code="z">(OCoLC)824154811</subfield><subfield code="z">(OCoLC)1086544714</subfield><subfield code="z">(OCoLC)1162556219</subfield><subfield code="z">(OCoLC)1241793455</subfield><subfield code="z">(OCoLC)1300581587</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274.23</subfield><subfield code="b">.A36 1983eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">GPF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adomian, G.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80091498</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic systems /</subfield><subfield code="c">George Adomian.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1983.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 331 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 169</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2010.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2010</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Stochastic Systems; Copyright Page; Contents; Foreword; Preface; Chapter 1. Green's Functions and Systems Theory; 1.1. Introduction: Some Remarks on the Mathematical Modeling of Dynamical Systems; 1.2. Linearity and Superposition; 1.3. The Concept of a Green's Function; 1.4. Simple Input-Output Systems and Green's Functions; 1.5. Operator Forms; 1.6. Green's Function for the Inhomogeneous Sturm-Liouville Operator; 1.7. Properties of the Green's Function; 1.8. Evaluation of the Wronskian; 1.9. Solution Using Abel's Formula</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.10. Use of Green's Function to Solve the Inhomogeneous Equation1.11. Adjoint Operators; 1.12. Green's Functions for Adjoint Operators; 1.13. Symbolic Functions; 1.14. Sturm-Liouville Differential Equation; 1.15. Boundary Conditions Specified on a Finite Interval [a, b]; 1.16. Series Expansions for G(x,?); 1.17. Multiple-Input-Multiple-Output Systems; 1.18. Bilinear Form of the Green's Function; 1.19. Bilinear Form of the Green's Function for the Sturm-Liouville Differential Equation; 1.20. Cases Where the Green's Function Does Not Exist; 1.21. Multidimensional Green's Functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.22. Green's Functions for Initial Conditions1.23. Approximate Calculation of Green's Functions; References; Chapter 2. A Basic Review of the Theory of Stochastic Processes; 2.1. The Nature of a Stochastic Process; 2.2. Stochastic Processes-Basic Definitions; 2.3. Characterization and Classification of Stochastic Processes; 2.4. Consistency Conditions on the Distribution; 2.5. Some Simple Stochastic Processes; 2.6. Time Dependences of Distributions; 2.7. Statistical Measures of Stochastic Processes; 2.8. Random Fields; 2.9. The Calculus of Stochastic Processes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.10. Expansions of Random Functions2.11. Ergodic Theorems; 2.12. Generalized Random Processes; References; Chapter 3. Stochastic Operators and Stochastic Systems; 3.1. Stochastic Systems-Basic Concepts; 3.2. Stochastic Green's Functions; 3.3. Statistical Operators; 3.4. Stochastic Green's Theorem; 3.5. Determination of the Kernel from the Physical Process; References; Chapter 4. Linear Stochastic Differential Equations; 4.1. Stochastic Differential Operators; 4.2. The Differential Equation Formulation; 4.3. Derivation of Stochastic Green's Theorem; 4.4. Hierarchy or Averaging Method</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5. Perturbation Theory4.6. Connection between Perturbation Theory and the Hierarchy Method; 4.7. The Decomposition Method; 4.8. Differential Operator with One Random Coefficient; 4.9. A Convenient Resolvent Kernel Formulation; 4.10. Inverse Operator Form of the Decomposition Method Solution; 4.11. Some Further Remarks on the Operator Identity (4.10.1); 4.12. General Form of the Stochastic Green's Function; 4.13. Random Initial Conditions; 4.14. Simplifying Green's Function Calculations for Higher Order Equations; References; Chapter 5. Nonlinear Stochastic Differential Equations</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128177</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128185</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastisches System</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4057635-8</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Stochastic systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGTyBbdvXCKjCtF7kbdjT3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Adomian, G.</subfield><subfield code="t">Stochastic systems.</subfield><subfield code="d">New York : Academic Press, ©1983</subfield><subfield code="z">9780120443703</subfield><subfield code="w">(DLC) 82016392</subfield><subfield code="w">(OCoLC)8786046</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 169.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/169</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=296979</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL452907</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329419</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">296979</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">229033</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101869</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316564070 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780080956756 0080956750 1282290339 9781282290334 0120443708 9780120443703 9786612290336 6612290331 |
language | English |
oclc_num | 316564070 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 331 pages) |
psigel | ZDB-4-EBA |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Adomian, G. http://id.loc.gov/authorities/names/n80091498 Stochastic systems / George Adomian. New York : Academic Press, 1983. 1 online resource (xvii, 331 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 169 Includes bibliographical references and index. Print version record. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL Front Cover; Stochastic Systems; Copyright Page; Contents; Foreword; Preface; Chapter 1. Green's Functions and Systems Theory; 1.1. Introduction: Some Remarks on the Mathematical Modeling of Dynamical Systems; 1.2. Linearity and Superposition; 1.3. The Concept of a Green's Function; 1.4. Simple Input-Output Systems and Green's Functions; 1.5. Operator Forms; 1.6. Green's Function for the Inhomogeneous Sturm-Liouville Operator; 1.7. Properties of the Green's Function; 1.8. Evaluation of the Wronskian; 1.9. Solution Using Abel's Formula 1.10. Use of Green's Function to Solve the Inhomogeneous Equation1.11. Adjoint Operators; 1.12. Green's Functions for Adjoint Operators; 1.13. Symbolic Functions; 1.14. Sturm-Liouville Differential Equation; 1.15. Boundary Conditions Specified on a Finite Interval [a, b]; 1.16. Series Expansions for G(x,?); 1.17. Multiple-Input-Multiple-Output Systems; 1.18. Bilinear Form of the Green's Function; 1.19. Bilinear Form of the Green's Function for the Sturm-Liouville Differential Equation; 1.20. Cases Where the Green's Function Does Not Exist; 1.21. Multidimensional Green's Functions 1.22. Green's Functions for Initial Conditions1.23. Approximate Calculation of Green's Functions; References; Chapter 2. A Basic Review of the Theory of Stochastic Processes; 2.1. The Nature of a Stochastic Process; 2.2. Stochastic Processes-Basic Definitions; 2.3. Characterization and Classification of Stochastic Processes; 2.4. Consistency Conditions on the Distribution; 2.5. Some Simple Stochastic Processes; 2.6. Time Dependences of Distributions; 2.7. Statistical Measures of Stochastic Processes; 2.8. Random Fields; 2.9. The Calculus of Stochastic Processes 2.10. Expansions of Random Functions2.11. Ergodic Theorems; 2.12. Generalized Random Processes; References; Chapter 3. Stochastic Operators and Stochastic Systems; 3.1. Stochastic Systems-Basic Concepts; 3.2. Stochastic Green's Functions; 3.3. Statistical Operators; 3.4. Stochastic Green's Theorem; 3.5. Determination of the Kernel from the Physical Process; References; Chapter 4. Linear Stochastic Differential Equations; 4.1. Stochastic Differential Operators; 4.2. The Differential Equation Formulation; 4.3. Derivation of Stochastic Green's Theorem; 4.4. Hierarchy or Averaging Method 4.5. Perturbation Theory4.6. Connection between Perturbation Theory and the Hierarchy Method; 4.7. The Decomposition Method; 4.8. Differential Operator with One Random Coefficient; 4.9. A Convenient Resolvent Kernel Formulation; 4.10. Inverse Operator Form of the Decomposition Method Solution; 4.11. Some Further Remarks on the Operator Identity (4.10.1); 4.12. General Form of the Stochastic Green's Function; 4.13. Random Initial Conditions; 4.14. Simplifying Green's Function Calculations for Higher Order Equations; References; Chapter 5. Nonlinear Stochastic Differential Equations English. Stochastic differential equations. http://id.loc.gov/authorities/subjects/sh85128177 Stochastic systems. http://id.loc.gov/authorities/subjects/sh85128185 Équations différentielles stochastiques. Systèmes stochastiques. MATHEMATICS Probability & Statistics General. bisacsh Stochastic differential equations fast Stochastic systems fast Stochastische Differentialgleichung gnd Stochastisches System gnd http://d-nb.info/gnd/4057635-8 has work: Stochastic systems (Text) https://id.oclc.org/worldcat/entity/E39PCGTyBbdvXCKjCtF7kbdjT3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Adomian, G. Stochastic systems. New York : Academic Press, ©1983 9780120443703 (DLC) 82016392 (OCoLC)8786046 Mathematics in science and engineering ; v. 169. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/169 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=296979 Volltext |
spellingShingle | Adomian, G. Stochastic systems / Mathematics in science and engineering ; Front Cover; Stochastic Systems; Copyright Page; Contents; Foreword; Preface; Chapter 1. Green's Functions and Systems Theory; 1.1. Introduction: Some Remarks on the Mathematical Modeling of Dynamical Systems; 1.2. Linearity and Superposition; 1.3. The Concept of a Green's Function; 1.4. Simple Input-Output Systems and Green's Functions; 1.5. Operator Forms; 1.6. Green's Function for the Inhomogeneous Sturm-Liouville Operator; 1.7. Properties of the Green's Function; 1.8. Evaluation of the Wronskian; 1.9. Solution Using Abel's Formula 1.10. Use of Green's Function to Solve the Inhomogeneous Equation1.11. Adjoint Operators; 1.12. Green's Functions for Adjoint Operators; 1.13. Symbolic Functions; 1.14. Sturm-Liouville Differential Equation; 1.15. Boundary Conditions Specified on a Finite Interval [a, b]; 1.16. Series Expansions for G(x,?); 1.17. Multiple-Input-Multiple-Output Systems; 1.18. Bilinear Form of the Green's Function; 1.19. Bilinear Form of the Green's Function for the Sturm-Liouville Differential Equation; 1.20. Cases Where the Green's Function Does Not Exist; 1.21. Multidimensional Green's Functions 1.22. Green's Functions for Initial Conditions1.23. Approximate Calculation of Green's Functions; References; Chapter 2. A Basic Review of the Theory of Stochastic Processes; 2.1. The Nature of a Stochastic Process; 2.2. Stochastic Processes-Basic Definitions; 2.3. Characterization and Classification of Stochastic Processes; 2.4. Consistency Conditions on the Distribution; 2.5. Some Simple Stochastic Processes; 2.6. Time Dependences of Distributions; 2.7. Statistical Measures of Stochastic Processes; 2.8. Random Fields; 2.9. The Calculus of Stochastic Processes 2.10. Expansions of Random Functions2.11. Ergodic Theorems; 2.12. Generalized Random Processes; References; Chapter 3. Stochastic Operators and Stochastic Systems; 3.1. Stochastic Systems-Basic Concepts; 3.2. Stochastic Green's Functions; 3.3. Statistical Operators; 3.4. Stochastic Green's Theorem; 3.5. Determination of the Kernel from the Physical Process; References; Chapter 4. Linear Stochastic Differential Equations; 4.1. Stochastic Differential Operators; 4.2. The Differential Equation Formulation; 4.3. Derivation of Stochastic Green's Theorem; 4.4. Hierarchy or Averaging Method 4.5. Perturbation Theory4.6. Connection between Perturbation Theory and the Hierarchy Method; 4.7. The Decomposition Method; 4.8. Differential Operator with One Random Coefficient; 4.9. A Convenient Resolvent Kernel Formulation; 4.10. Inverse Operator Form of the Decomposition Method Solution; 4.11. Some Further Remarks on the Operator Identity (4.10.1); 4.12. General Form of the Stochastic Green's Function; 4.13. Random Initial Conditions; 4.14. Simplifying Green's Function Calculations for Higher Order Equations; References; Chapter 5. Nonlinear Stochastic Differential Equations Stochastic differential equations. http://id.loc.gov/authorities/subjects/sh85128177 Stochastic systems. http://id.loc.gov/authorities/subjects/sh85128185 Équations différentielles stochastiques. Systèmes stochastiques. MATHEMATICS Probability & Statistics General. bisacsh Stochastic differential equations fast Stochastic systems fast Stochastische Differentialgleichung gnd Stochastisches System gnd http://d-nb.info/gnd/4057635-8 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85128177 http://id.loc.gov/authorities/subjects/sh85128185 http://d-nb.info/gnd/4057635-8 |
title | Stochastic systems / |
title_auth | Stochastic systems / |
title_exact_search | Stochastic systems / |
title_full | Stochastic systems / George Adomian. |
title_fullStr | Stochastic systems / George Adomian. |
title_full_unstemmed | Stochastic systems / George Adomian. |
title_short | Stochastic systems / |
title_sort | stochastic systems |
topic | Stochastic differential equations. http://id.loc.gov/authorities/subjects/sh85128177 Stochastic systems. http://id.loc.gov/authorities/subjects/sh85128185 Équations différentielles stochastiques. Systèmes stochastiques. MATHEMATICS Probability & Statistics General. bisacsh Stochastic differential equations fast Stochastic systems fast Stochastische Differentialgleichung gnd Stochastisches System gnd http://d-nb.info/gnd/4057635-8 |
topic_facet | Stochastic differential equations. Stochastic systems. Équations différentielles stochastiques. Systèmes stochastiques. MATHEMATICS Probability & Statistics General. Stochastic differential equations Stochastic systems Stochastische Differentialgleichung Stochastisches System |
url | https://www.sciencedirect.com/science/bookseries/00765392/169 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=296979 |
work_keys_str_mv | AT adomiang stochasticsystems |