Invariant variational principles /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1977.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 138. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 1 online resource (xv, 172 pages) |
Bibliographie: | Includes bibliographical references (pages 165-168) and index. |
ISBN: | 9780124547506 0124547508 9780080956473 0080956475 1282289675 9781282289673 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316563999 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1977 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d EBLCP |d IDEBK |d TEF |d E7B |d OCLCQ |d OPELS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d K6U |d OCLCO |d SGP |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 646827458 |a 823843554 |a 823912260 |a 824099327 |a 824154745 | ||
020 | |a 9780124547506 |q (electronic bk.) | ||
020 | |a 0124547508 |q (electronic bk.) | ||
020 | |a 9780080956473 |q (electronic bk.) | ||
020 | |a 0080956475 |q (electronic bk.) | ||
020 | |a 1282289675 | ||
020 | |a 9781282289673 | ||
035 | |a (OCoLC)316563999 |z (OCoLC)646827458 |z (OCoLC)823843554 |z (OCoLC)823912260 |z (OCoLC)824099327 |z (OCoLC)824154745 | ||
050 | 4 | |a QA316 |b .L76 1977eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
072 | 7 | |a GPF |2 bicssc | |
082 | 7 | |a 515/.64 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Logan, J. David |q (John David) |1 https://id.oclc.org/worldcat/entity/E39PBJfX6CTw7wPThgtmWJrQbd |0 http://id.loc.gov/authorities/names/n86123213 | |
245 | 1 | 0 | |a Invariant variational principles / |c John David Logan. |
260 | |a New York : |b Academic Press, |c 1977. | ||
300 | |a 1 online resource (xv, 172 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 138 | |
504 | |a Includes bibliographical references (pages 165-168) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Invariant Variational Principles; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Necessary Conditions for an Extremum; 1.1 Introduction; 1.2 Variation of Functionals; 1.3 Single Integral Problems; 1.4 Applications to Classical Dynamics; 1.5 Multiple Integral Problems; 1.6 Invariance-A Preview; 1.7 Bibliographic Notes; Exercises; Chapter 2. Invariance of Single Integrals; 2.1 r-Parameter Transformations; 2.2 Invariance Definitions; 2.3 The Fundamental Invariance Identities; 2.4 The Noether Theorem and Conservation Laws; 2.5 Particle Mechanics and the Galilean Group | |
505 | 8 | |a 2.6 Bibliographic NotesExercises; Chapter 3. Generalized Killing Equations; 3.1 Introduction; 3.2 Example-The Emden Equation; 3.3 Killing's Equations; 3.4 The Damped Harmonic Oscillator; 3.5 The Inverse Problem; Exercises; Chapter 4. Invariance of Multiple Integrals; 4.1 Basic Definitions; 4.2 The Fundamental Theorems; 4.3 Derivation of the Invariance Identities; 4.4 Conservation Theorems; Exercises; Chapter 5. Invariance Principles in the Theory of Physical Fields; 5.1 Introduction; 5.2 Tensors; 5.3 The Lorentz Group; 5.4 Infinitesimal Lorentz Transformations; 5.5 Physical Fields | |
505 | 8 | |a 5.6 Scalar Fields5.7 The Electromagnetic Field; 5.8 Covariant Vector Fields; Exercises; Chapter 6. Second-Order Variation Problems; 6.1 The Euler-Lagrange Equations; 6.2 Invariance Criteria for Single Integrals; 6.3 Multiple Integrals; 6.4 The Korteweg-devries Equation; 6.5 Bibliographic Notes; Exercises; Chapter 7. Conformally Invariant Problems; 7.1 Conformal Transformations; 7.2 Conformal Invariance Identities for Scalar Fields; 7.3 Conformal Conservation Laws; 7.4 Conformal Covariance; Exercises; Chapter 8. Parameter-Invariant Problems; 8.1 Introduction | |
505 | 8 | |a 8.2 Sufficient Conditions for Parameter-Invariance8.3 The Conditions of Zermelo and Weierstrass; 8.4 The Second Noether Theorem; Exercises; References; Index | |
650 | 0 | |a Calculus of variations. |0 http://id.loc.gov/authorities/subjects/sh85018809 | |
650 | 0 | |a Invariants. |0 http://id.loc.gov/authorities/subjects/sh85067665 | |
650 | 0 | |a Transformations (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85136920 | |
650 | 6 | |a Calcul des variations. | |
650 | 6 | |a Invariants. | |
650 | 6 | |a Transformations (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Calculus of variations |2 fast | |
650 | 7 | |a Invariants |2 fast | |
650 | 7 | |a Transformations (Mathematics) |2 fast | |
758 | |i has work: |a Invariant variational principles (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFRXmg94RdQwVQd9dQYJcK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Logan, J. David (John David). |t Invariant variational principles. |d New York : Academic Press, 1977 |z 9780124547506 |w (DLC) 76052727 |w (OCoLC)2982901 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 138. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297119 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/138 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL453070 | ||
938 | |a ebrary |b EBRY |n ebr10329409 | ||
938 | |a EBSCOhost |b EBSC |n 297119 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 228967 | ||
938 | |a YBP Library Services |b YANK |n 3101842 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316563999 |
---|---|
_version_ | 1816881689234767872 |
adam_text | |
any_adam_object | |
author | Logan, J. David (John David) |
author_GND | http://id.loc.gov/authorities/names/n86123213 |
author_facet | Logan, J. David (John David) |
author_role | |
author_sort | Logan, J. David |
author_variant | j d l jd jdl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA316 |
callnumber-raw | QA316 .L76 1977eb |
callnumber-search | QA316 .L76 1977eb |
callnumber-sort | QA 3316 L76 41977EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Invariant Variational Principles; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Necessary Conditions for an Extremum; 1.1 Introduction; 1.2 Variation of Functionals; 1.3 Single Integral Problems; 1.4 Applications to Classical Dynamics; 1.5 Multiple Integral Problems; 1.6 Invariance-A Preview; 1.7 Bibliographic Notes; Exercises; Chapter 2. Invariance of Single Integrals; 2.1 r-Parameter Transformations; 2.2 Invariance Definitions; 2.3 The Fundamental Invariance Identities; 2.4 The Noether Theorem and Conservation Laws; 2.5 Particle Mechanics and the Galilean Group 2.6 Bibliographic NotesExercises; Chapter 3. Generalized Killing Equations; 3.1 Introduction; 3.2 Example-The Emden Equation; 3.3 Killing's Equations; 3.4 The Damped Harmonic Oscillator; 3.5 The Inverse Problem; Exercises; Chapter 4. Invariance of Multiple Integrals; 4.1 Basic Definitions; 4.2 The Fundamental Theorems; 4.3 Derivation of the Invariance Identities; 4.4 Conservation Theorems; Exercises; Chapter 5. Invariance Principles in the Theory of Physical Fields; 5.1 Introduction; 5.2 Tensors; 5.3 The Lorentz Group; 5.4 Infinitesimal Lorentz Transformations; 5.5 Physical Fields 5.6 Scalar Fields5.7 The Electromagnetic Field; 5.8 Covariant Vector Fields; Exercises; Chapter 6. Second-Order Variation Problems; 6.1 The Euler-Lagrange Equations; 6.2 Invariance Criteria for Single Integrals; 6.3 Multiple Integrals; 6.4 The Korteweg-devries Equation; 6.5 Bibliographic Notes; Exercises; Chapter 7. Conformally Invariant Problems; 7.1 Conformal Transformations; 7.2 Conformal Invariance Identities for Scalar Fields; 7.3 Conformal Conservation Laws; 7.4 Conformal Covariance; Exercises; Chapter 8. Parameter-Invariant Problems; 8.1 Introduction 8.2 Sufficient Conditions for Parameter-Invariance8.3 The Conditions of Zermelo and Weierstrass; 8.4 The Second Noether Theorem; Exercises; References; Index |
ctrlnum | (OCoLC)316563999 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05236cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316563999</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1977 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">TEF</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646827458</subfield><subfield code="a">823843554</subfield><subfield code="a">823912260</subfield><subfield code="a">824099327</subfield><subfield code="a">824154745</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124547506</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124547508</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956473</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956475</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282289675</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282289673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316563999</subfield><subfield code="z">(OCoLC)646827458</subfield><subfield code="z">(OCoLC)823843554</subfield><subfield code="z">(OCoLC)823912260</subfield><subfield code="z">(OCoLC)824099327</subfield><subfield code="z">(OCoLC)824154745</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA316</subfield><subfield code="b">.L76 1977eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">GPF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Logan, J. David</subfield><subfield code="q">(John David)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJfX6CTw7wPThgtmWJrQbd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86123213</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant variational principles /</subfield><subfield code="c">John David Logan.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1977.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 172 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 138</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 165-168) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Invariant Variational Principles; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Necessary Conditions for an Extremum; 1.1 Introduction; 1.2 Variation of Functionals; 1.3 Single Integral Problems; 1.4 Applications to Classical Dynamics; 1.5 Multiple Integral Problems; 1.6 Invariance-A Preview; 1.7 Bibliographic Notes; Exercises; Chapter 2. Invariance of Single Integrals; 2.1 r-Parameter Transformations; 2.2 Invariance Definitions; 2.3 The Fundamental Invariance Identities; 2.4 The Noether Theorem and Conservation Laws; 2.5 Particle Mechanics and the Galilean Group</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.6 Bibliographic NotesExercises; Chapter 3. Generalized Killing Equations; 3.1 Introduction; 3.2 Example-The Emden Equation; 3.3 Killing's Equations; 3.4 The Damped Harmonic Oscillator; 3.5 The Inverse Problem; Exercises; Chapter 4. Invariance of Multiple Integrals; 4.1 Basic Definitions; 4.2 The Fundamental Theorems; 4.3 Derivation of the Invariance Identities; 4.4 Conservation Theorems; Exercises; Chapter 5. Invariance Principles in the Theory of Physical Fields; 5.1 Introduction; 5.2 Tensors; 5.3 The Lorentz Group; 5.4 Infinitesimal Lorentz Transformations; 5.5 Physical Fields</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.6 Scalar Fields5.7 The Electromagnetic Field; 5.8 Covariant Vector Fields; Exercises; Chapter 6. Second-Order Variation Problems; 6.1 The Euler-Lagrange Equations; 6.2 Invariance Criteria for Single Integrals; 6.3 Multiple Integrals; 6.4 The Korteweg-devries Equation; 6.5 Bibliographic Notes; Exercises; Chapter 7. Conformally Invariant Problems; 7.1 Conformal Transformations; 7.2 Conformal Invariance Identities for Scalar Fields; 7.3 Conformal Conservation Laws; 7.4 Conformal Covariance; Exercises; Chapter 8. Parameter-Invariant Problems; 8.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2 Sufficient Conditions for Parameter-Invariance8.3 The Conditions of Zermelo and Weierstrass; 8.4 The Second Noether Theorem; Exercises; References; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus of variations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018809</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Invariants.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067665</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Transformations (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136920</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul des variations.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Invariants.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transformations (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus of variations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformations (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Invariant variational principles (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFRXmg94RdQwVQd9dQYJcK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Logan, J. David (John David).</subfield><subfield code="t">Invariant variational principles.</subfield><subfield code="d">New York : Academic Press, 1977</subfield><subfield code="z">9780124547506</subfield><subfield code="w">(DLC) 76052727</subfield><subfield code="w">(OCoLC)2982901</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 138.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297119</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/138</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL453070</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329409</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297119</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">228967</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101842</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316563999 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780124547506 0124547508 9780080956473 0080956475 1282289675 9781282289673 |
language | English |
oclc_num | 316563999 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 172 pages) |
psigel | ZDB-4-EBA |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Logan, J. David (John David) https://id.oclc.org/worldcat/entity/E39PBJfX6CTw7wPThgtmWJrQbd http://id.loc.gov/authorities/names/n86123213 Invariant variational principles / John David Logan. New York : Academic Press, 1977. 1 online resource (xv, 172 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 138 Includes bibliographical references (pages 165-168) and index. Print version record. Front Cover; Invariant Variational Principles; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Necessary Conditions for an Extremum; 1.1 Introduction; 1.2 Variation of Functionals; 1.3 Single Integral Problems; 1.4 Applications to Classical Dynamics; 1.5 Multiple Integral Problems; 1.6 Invariance-A Preview; 1.7 Bibliographic Notes; Exercises; Chapter 2. Invariance of Single Integrals; 2.1 r-Parameter Transformations; 2.2 Invariance Definitions; 2.3 The Fundamental Invariance Identities; 2.4 The Noether Theorem and Conservation Laws; 2.5 Particle Mechanics and the Galilean Group 2.6 Bibliographic NotesExercises; Chapter 3. Generalized Killing Equations; 3.1 Introduction; 3.2 Example-The Emden Equation; 3.3 Killing's Equations; 3.4 The Damped Harmonic Oscillator; 3.5 The Inverse Problem; Exercises; Chapter 4. Invariance of Multiple Integrals; 4.1 Basic Definitions; 4.2 The Fundamental Theorems; 4.3 Derivation of the Invariance Identities; 4.4 Conservation Theorems; Exercises; Chapter 5. Invariance Principles in the Theory of Physical Fields; 5.1 Introduction; 5.2 Tensors; 5.3 The Lorentz Group; 5.4 Infinitesimal Lorentz Transformations; 5.5 Physical Fields 5.6 Scalar Fields5.7 The Electromagnetic Field; 5.8 Covariant Vector Fields; Exercises; Chapter 6. Second-Order Variation Problems; 6.1 The Euler-Lagrange Equations; 6.2 Invariance Criteria for Single Integrals; 6.3 Multiple Integrals; 6.4 The Korteweg-devries Equation; 6.5 Bibliographic Notes; Exercises; Chapter 7. Conformally Invariant Problems; 7.1 Conformal Transformations; 7.2 Conformal Invariance Identities for Scalar Fields; 7.3 Conformal Conservation Laws; 7.4 Conformal Covariance; Exercises; Chapter 8. Parameter-Invariant Problems; 8.1 Introduction 8.2 Sufficient Conditions for Parameter-Invariance8.3 The Conditions of Zermelo and Weierstrass; 8.4 The Second Noether Theorem; Exercises; References; Index Calculus of variations. http://id.loc.gov/authorities/subjects/sh85018809 Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Transformations (Mathematics) http://id.loc.gov/authorities/subjects/sh85136920 Calcul des variations. Invariants. Transformations (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus of variations fast Invariants fast Transformations (Mathematics) fast has work: Invariant variational principles (Text) https://id.oclc.org/worldcat/entity/E39PCFRXmg94RdQwVQd9dQYJcK https://id.oclc.org/worldcat/ontology/hasWork Print version: Logan, J. David (John David). Invariant variational principles. New York : Academic Press, 1977 9780124547506 (DLC) 76052727 (OCoLC)2982901 Mathematics in science and engineering ; v. 138. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297119 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/138 Volltext |
spellingShingle | Logan, J. David (John David) Invariant variational principles / Mathematics in science and engineering ; Front Cover; Invariant Variational Principles; Copyright Page; Contents; Preface; Acknowledgments; Chapter 1. Necessary Conditions for an Extremum; 1.1 Introduction; 1.2 Variation of Functionals; 1.3 Single Integral Problems; 1.4 Applications to Classical Dynamics; 1.5 Multiple Integral Problems; 1.6 Invariance-A Preview; 1.7 Bibliographic Notes; Exercises; Chapter 2. Invariance of Single Integrals; 2.1 r-Parameter Transformations; 2.2 Invariance Definitions; 2.3 The Fundamental Invariance Identities; 2.4 The Noether Theorem and Conservation Laws; 2.5 Particle Mechanics and the Galilean Group 2.6 Bibliographic NotesExercises; Chapter 3. Generalized Killing Equations; 3.1 Introduction; 3.2 Example-The Emden Equation; 3.3 Killing's Equations; 3.4 The Damped Harmonic Oscillator; 3.5 The Inverse Problem; Exercises; Chapter 4. Invariance of Multiple Integrals; 4.1 Basic Definitions; 4.2 The Fundamental Theorems; 4.3 Derivation of the Invariance Identities; 4.4 Conservation Theorems; Exercises; Chapter 5. Invariance Principles in the Theory of Physical Fields; 5.1 Introduction; 5.2 Tensors; 5.3 The Lorentz Group; 5.4 Infinitesimal Lorentz Transformations; 5.5 Physical Fields 5.6 Scalar Fields5.7 The Electromagnetic Field; 5.8 Covariant Vector Fields; Exercises; Chapter 6. Second-Order Variation Problems; 6.1 The Euler-Lagrange Equations; 6.2 Invariance Criteria for Single Integrals; 6.3 Multiple Integrals; 6.4 The Korteweg-devries Equation; 6.5 Bibliographic Notes; Exercises; Chapter 7. Conformally Invariant Problems; 7.1 Conformal Transformations; 7.2 Conformal Invariance Identities for Scalar Fields; 7.3 Conformal Conservation Laws; 7.4 Conformal Covariance; Exercises; Chapter 8. Parameter-Invariant Problems; 8.1 Introduction 8.2 Sufficient Conditions for Parameter-Invariance8.3 The Conditions of Zermelo and Weierstrass; 8.4 The Second Noether Theorem; Exercises; References; Index Calculus of variations. http://id.loc.gov/authorities/subjects/sh85018809 Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Transformations (Mathematics) http://id.loc.gov/authorities/subjects/sh85136920 Calcul des variations. Invariants. Transformations (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus of variations fast Invariants fast Transformations (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85018809 http://id.loc.gov/authorities/subjects/sh85067665 http://id.loc.gov/authorities/subjects/sh85136920 |
title | Invariant variational principles / |
title_auth | Invariant variational principles / |
title_exact_search | Invariant variational principles / |
title_full | Invariant variational principles / John David Logan. |
title_fullStr | Invariant variational principles / John David Logan. |
title_full_unstemmed | Invariant variational principles / John David Logan. |
title_short | Invariant variational principles / |
title_sort | invariant variational principles |
topic | Calculus of variations. http://id.loc.gov/authorities/subjects/sh85018809 Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Transformations (Mathematics) http://id.loc.gov/authorities/subjects/sh85136920 Calcul des variations. Invariants. Transformations (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus of variations fast Invariants fast Transformations (Mathematics) fast |
topic_facet | Calculus of variations. Invariants. Transformations (Mathematics) Calcul des variations. Transformations (Mathématiques) MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Calculus of variations Invariants |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297119 https://www.sciencedirect.com/science/bookseries/00765392/138 |
work_keys_str_mv | AT loganjdavid invariantvariationalprinciples |