Introduction to the theory and application of differential equations with deviating arguments /:
Introduction to the theory and application of differential equations with deviating arguments.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English Russian |
Veröffentlicht: |
New York :
Academic Press,
1973.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 105. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Introduction to the theory and application of differential equations with deviating arguments. |
Beschreibung: | 1 online resource (xiv, 357 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 293-357). |
ISBN: | 9780122377501 0122377508 9780080956145 0080956149 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316563935 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1973 nyua ob 000 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OPELS |d E7B |d OCLCQ |d OPELS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d OCLCO |d SGP |d OCLCQ |d OCL |d COA |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 646827736 |a 1340056926 | ||
020 | |a 9780122377501 |q (electronic bk.) | ||
020 | |a 0122377508 |q (electronic bk.) | ||
020 | |a 9780080956145 |q (electronic bk.) | ||
020 | |a 0080956149 |q (electronic bk.) | ||
024 | 8 | |a (WaSeSS)ssj0000339307 | |
035 | |a (OCoLC)316563935 |z (OCoLC)646827736 |z (OCoLC)1340056926 | ||
041 | 1 | |a eng |h rus | |
050 | 4 | |a QA371 |b .E3813 1973eb | |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
082 | 7 | |a 515/.35 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ėlʹsgolʹt︠s︡, L. Ė. |q (Lev Ėrnestovich) |1 https://id.oclc.org/worldcat/entity/E39PBJgt9pvTBK6QHytvrXqfbd |0 http://id.loc.gov/authorities/names/n83827795 | |
240 | 1 | 0 | |a Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom. |l English |
245 | 1 | 0 | |a Introduction to the theory and application of differential equations with deviating arguments / |c L.E. Ėlʹsgolʹt︠s︡ and S.B. Norkin ; translated by John L. Casti. |
260 | |a New York : |b Academic Press, |c 1973. | ||
300 | |a 1 online resource (xiv, 357 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rdaft |0 http://rdaregistry.info/termList/fileType/1002. | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 105 | |
504 | |a Includes bibliographical references (pages 293-357). | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Copyright Page; Contents; PREFACE; TRANSLATOR'S NOTE; INTRODUCTION; Chapter I. Basic Concepts and Existence Theorems; 1. Statement of the Basic Initial Value Problem. Classifications; 2. The Method of Steps; 3. Integrable Types of Equations with a Deviating Argument; 4. Existence and Uniqueness Theorems for the Solution of the Basic Initial Value Problem; 5. Some Specific Singularities of the Solutions of Equations with a Deviating Argument; Chapter II. Linear Equations | |
505 | 8 | |a 1. Some Properties of Linear Equations2. Linear Equations with Constant Coefficients and Constant Deviating Arguments; 3. The Characteristic Quasipolynomial; 4. The Expansion of the Solution into a Series of Basic Solutions; 5. Two-Sided Solutions; 6. The Homogeneous Initial Value Problem; 7. Some Types of Linear Equations with Variable Coefficients and Variable Deviating Arguments; Chapter III. Stability Theory; 1. Basic Concepts; 2. The Stability of Solutions to Stationary Linear Equations; 3. Conditions for Negativity of the Real Parts of All Roots of the Quasipolynomial | |
505 | 8 | |a 4. The Case of Small Deviating Arguments5. The Case of Large Deviating Arguments; 6. Lyapunov's Second Method; 7. Stability in the First Approximation; 8. Stability under Constantly Acting Disturbances; 9. Lyapunov's Second Method for Equations of Neutral Type; 10. Absolute Stability; Chapter IV. Periodic Solutions; 1. Some Properties of Periodic Solutions and Existence Theorems; 2. Periodic Solutions of Stationary, Linear, Homogeneous Equations; 3. Periodic Solutions of Linear Inhomogeneous Equations with Stationary Homogeneous Parts | |
505 | 8 | |a 4. Periodic Solutions of Linear Equations with Variable Coefficients and Deviating Arguments5. Periodic Solutionsof Quasilinear Equations; 6. Functionally Equivalent Systems of Differential Equations with a Deviating Argument; Chapter V. Stochastic Differential Equations with a Retarded Argument; 1. Basic Concepts; 2. Stability; 3. Stationary Solutions of Equations with a Delay; Chapter VI. Approximate Methods for the Integration of Differential Equations with a Deviating Argument; 1. General Remarks about the Application of Approximate Integration Methods | |
505 | 8 | |a 2. Euler's Method and Parabolic Methods3. Expansion in Powers of the Retardation; 4. Asymptotic Methods for Equations with Small Deviating Argument; 5. Iterative Methods; Chapter VII. Some Generalizations and a Brief Survey of Work in Other Areas of the Theory of Differential Equations with a Deviating Argument; 1. Some Generalizations; 2. Periodic Solutions; 3. Boundary-Value Problems; 4. Optimal Processes with a Retardation; 5. Stationary Points; BIBLIOGRAPHY; I. Monographs; II. Survey Articles; III. Journal Articles | |
520 | |a Introduction to the theory and application of differential equations with deviating arguments. | ||
650 | 0 | |a Delay differential equations. |0 http://id.loc.gov/authorities/subjects/sh85037892 | |
650 | 0 | |a Differential-difference equations. |0 http://id.loc.gov/authorities/subjects/sh85037889 | |
650 | 0 | |a Differential equations. |0 http://id.loc.gov/authorities/subjects/sh85037890 | |
650 | 6 | |a Équations différentielles aux différences. | |
650 | 6 | |a Équations différentielles. | |
650 | 6 | |a Équations différentielles à retard. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Differential-difference equations |2 fast | |
650 | 7 | |a Delay differential equations |2 fast | |
700 | 1 | |a Norkin, S. B. |q (Sim Borisovich) |1 https://id.oclc.org/worldcat/entity/E39PCjCCBPt36Trjc7ypkMpqw3 |0 http://id.loc.gov/authorities/names/n84803318 | |
776 | 0 | 8 | |i Print version: |a Ėlʹsgolʹt︠s︡, L. Ė (Lev Ėrnestovich). |s Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom. English. |t Introduction to the theory and application of differential equations with deviating arguments. |d New York : Academic Press, 1973 |z 9780122377501 |w (DLC) 73000811 |w (OCoLC)700708 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 105. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297026 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/105 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL452980 | ||
938 | |a ebrary |b EBRY |n ebr10329548 | ||
938 | |a EBSCOhost |b EBSC |n 297026 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316563935 |
---|---|
_version_ | 1816881689221136384 |
adam_text | |
any_adam_object | |
author | Ėlʹsgolʹt︠s︡, L. Ė. (Lev Ėrnestovich) |
author2 | Norkin, S. B. (Sim Borisovich) |
author2_role | |
author2_variant | s b n sb sbn |
author_GND | http://id.loc.gov/authorities/names/n83827795 http://id.loc.gov/authorities/names/n84803318 |
author_facet | Ėlʹsgolʹt︠s︡, L. Ė. (Lev Ėrnestovich) Norkin, S. B. (Sim Borisovich) |
author_role | |
author_sort | Ėlʹsgolʹt︠s︡, L. Ė |
author_variant | l e e le lee |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA371 |
callnumber-raw | QA371 .E3813 1973eb |
callnumber-search | QA371 .E3813 1973eb |
callnumber-sort | QA 3371 E3813 41973EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Copyright Page; Contents; PREFACE; TRANSLATOR'S NOTE; INTRODUCTION; Chapter I. Basic Concepts and Existence Theorems; 1. Statement of the Basic Initial Value Problem. Classifications; 2. The Method of Steps; 3. Integrable Types of Equations with a Deviating Argument; 4. Existence and Uniqueness Theorems for the Solution of the Basic Initial Value Problem; 5. Some Specific Singularities of the Solutions of Equations with a Deviating Argument; Chapter II. Linear Equations 1. Some Properties of Linear Equations2. Linear Equations with Constant Coefficients and Constant Deviating Arguments; 3. The Characteristic Quasipolynomial; 4. The Expansion of the Solution into a Series of Basic Solutions; 5. Two-Sided Solutions; 6. The Homogeneous Initial Value Problem; 7. Some Types of Linear Equations with Variable Coefficients and Variable Deviating Arguments; Chapter III. Stability Theory; 1. Basic Concepts; 2. The Stability of Solutions to Stationary Linear Equations; 3. Conditions for Negativity of the Real Parts of All Roots of the Quasipolynomial 4. The Case of Small Deviating Arguments5. The Case of Large Deviating Arguments; 6. Lyapunov's Second Method; 7. Stability in the First Approximation; 8. Stability under Constantly Acting Disturbances; 9. Lyapunov's Second Method for Equations of Neutral Type; 10. Absolute Stability; Chapter IV. Periodic Solutions; 1. Some Properties of Periodic Solutions and Existence Theorems; 2. Periodic Solutions of Stationary, Linear, Homogeneous Equations; 3. Periodic Solutions of Linear Inhomogeneous Equations with Stationary Homogeneous Parts 4. Periodic Solutions of Linear Equations with Variable Coefficients and Deviating Arguments5. Periodic Solutionsof Quasilinear Equations; 6. Functionally Equivalent Systems of Differential Equations with a Deviating Argument; Chapter V. Stochastic Differential Equations with a Retarded Argument; 1. Basic Concepts; 2. Stability; 3. Stationary Solutions of Equations with a Delay; Chapter VI. Approximate Methods for the Integration of Differential Equations with a Deviating Argument; 1. General Remarks about the Application of Approximate Integration Methods 2. Euler's Method and Parabolic Methods3. Expansion in Powers of the Retardation; 4. Asymptotic Methods for Equations with Small Deviating Argument; 5. Iterative Methods; Chapter VII. Some Generalizations and a Brief Survey of Work in Other Areas of the Theory of Differential Equations with a Deviating Argument; 1. Some Generalizations; 2. Periodic Solutions; 3. Boundary-Value Problems; 4. Optimal Processes with a Retardation; 5. Stationary Points; BIBLIOGRAPHY; I. Monographs; II. Survey Articles; III. Journal Articles |
ctrlnum | (OCoLC)316563935 |
dewey-full | 515/.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.35 |
dewey-search | 515/.35 |
dewey-sort | 3515 235 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06611cam a2200697 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316563935</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1973 nyua ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OPELS</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">COA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646827736</subfield><subfield code="a">1340056926</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780122377501</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0122377508</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956145</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956149</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">(WaSeSS)ssj0000339307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316563935</subfield><subfield code="z">(OCoLC)646827736</subfield><subfield code="z">(OCoLC)1340056926</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA371</subfield><subfield code="b">.E3813 1973eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ėlʹsgolʹt︠s︡, L. Ė.</subfield><subfield code="q">(Lev Ėrnestovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJgt9pvTBK6QHytvrXqfbd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83827795</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom.</subfield><subfield code="l">English</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the theory and application of differential equations with deviating arguments /</subfield><subfield code="c">L.E. Ėlʹsgolʹt︠s︡ and S.B. Norkin ; translated by John L. Casti.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1973.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 357 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield><subfield code="0">http://rdaregistry.info/termList/fileType/1002.</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 105</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 293-357).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Copyright Page; Contents; PREFACE; TRANSLATOR'S NOTE; INTRODUCTION; Chapter I. Basic Concepts and Existence Theorems; 1. Statement of the Basic Initial Value Problem. Classifications; 2. The Method of Steps; 3. Integrable Types of Equations with a Deviating Argument; 4. Existence and Uniqueness Theorems for the Solution of the Basic Initial Value Problem; 5. Some Specific Singularities of the Solutions of Equations with a Deviating Argument; Chapter II. Linear Equations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Some Properties of Linear Equations2. Linear Equations with Constant Coefficients and Constant Deviating Arguments; 3. The Characteristic Quasipolynomial; 4. The Expansion of the Solution into a Series of Basic Solutions; 5. Two-Sided Solutions; 6. The Homogeneous Initial Value Problem; 7. Some Types of Linear Equations with Variable Coefficients and Variable Deviating Arguments; Chapter III. Stability Theory; 1. Basic Concepts; 2. The Stability of Solutions to Stationary Linear Equations; 3. Conditions for Negativity of the Real Parts of All Roots of the Quasipolynomial</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. The Case of Small Deviating Arguments5. The Case of Large Deviating Arguments; 6. Lyapunov's Second Method; 7. Stability in the First Approximation; 8. Stability under Constantly Acting Disturbances; 9. Lyapunov's Second Method for Equations of Neutral Type; 10. Absolute Stability; Chapter IV. Periodic Solutions; 1. Some Properties of Periodic Solutions and Existence Theorems; 2. Periodic Solutions of Stationary, Linear, Homogeneous Equations; 3. Periodic Solutions of Linear Inhomogeneous Equations with Stationary Homogeneous Parts</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Periodic Solutions of Linear Equations with Variable Coefficients and Deviating Arguments5. Periodic Solutionsof Quasilinear Equations; 6. Functionally Equivalent Systems of Differential Equations with a Deviating Argument; Chapter V. Stochastic Differential Equations with a Retarded Argument; 1. Basic Concepts; 2. Stability; 3. Stationary Solutions of Equations with a Delay; Chapter VI. Approximate Methods for the Integration of Differential Equations with a Deviating Argument; 1. General Remarks about the Application of Approximate Integration Methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Euler's Method and Parabolic Methods3. Expansion in Powers of the Retardation; 4. Asymptotic Methods for Equations with Small Deviating Argument; 5. Iterative Methods; Chapter VII. Some Generalizations and a Brief Survey of Work in Other Areas of the Theory of Differential Equations with a Deviating Argument; 1. Some Generalizations; 2. Periodic Solutions; 3. Boundary-Value Problems; 4. Optimal Processes with a Retardation; 5. Stationary Points; BIBLIOGRAPHY; I. Monographs; II. Survey Articles; III. Journal Articles</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction to the theory and application of differential equations with deviating arguments.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Delay differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037892</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential-difference equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037889</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037890</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles aux différences.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles à retard.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential-difference equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Delay differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Norkin, S. B.</subfield><subfield code="q">(Sim Borisovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCCBPt36Trjc7ypkMpqw3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84803318</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ėlʹsgolʹt︠s︡, L. Ė (Lev Ėrnestovich).</subfield><subfield code="s">Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom. English.</subfield><subfield code="t">Introduction to the theory and application of differential equations with deviating arguments.</subfield><subfield code="d">New York : Academic Press, 1973</subfield><subfield code="z">9780122377501</subfield><subfield code="w">(DLC) 73000811</subfield><subfield code="w">(OCoLC)700708</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 105.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297026</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/105</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL452980</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329548</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297026</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316563935 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780122377501 0122377508 9780080956145 0080956149 |
language | English Russian |
oclc_num | 316563935 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 357 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1973 |
publishDateSearch | 1973 |
publishDateSort | 1973 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Ėlʹsgolʹt︠s︡, L. Ė. (Lev Ėrnestovich) https://id.oclc.org/worldcat/entity/E39PBJgt9pvTBK6QHytvrXqfbd http://id.loc.gov/authorities/names/n83827795 Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom. English Introduction to the theory and application of differential equations with deviating arguments / L.E. Ėlʹsgolʹt︠s︡ and S.B. Norkin ; translated by John L. Casti. New York : Academic Press, 1973. 1 online resource (xiv, 357 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rdaft http://rdaregistry.info/termList/fileType/1002. Mathematics in science and engineering ; v. 105 Includes bibliographical references (pages 293-357). Print version record. Front Cover; Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Copyright Page; Contents; PREFACE; TRANSLATOR'S NOTE; INTRODUCTION; Chapter I. Basic Concepts and Existence Theorems; 1. Statement of the Basic Initial Value Problem. Classifications; 2. The Method of Steps; 3. Integrable Types of Equations with a Deviating Argument; 4. Existence and Uniqueness Theorems for the Solution of the Basic Initial Value Problem; 5. Some Specific Singularities of the Solutions of Equations with a Deviating Argument; Chapter II. Linear Equations 1. Some Properties of Linear Equations2. Linear Equations with Constant Coefficients and Constant Deviating Arguments; 3. The Characteristic Quasipolynomial; 4. The Expansion of the Solution into a Series of Basic Solutions; 5. Two-Sided Solutions; 6. The Homogeneous Initial Value Problem; 7. Some Types of Linear Equations with Variable Coefficients and Variable Deviating Arguments; Chapter III. Stability Theory; 1. Basic Concepts; 2. The Stability of Solutions to Stationary Linear Equations; 3. Conditions for Negativity of the Real Parts of All Roots of the Quasipolynomial 4. The Case of Small Deviating Arguments5. The Case of Large Deviating Arguments; 6. Lyapunov's Second Method; 7. Stability in the First Approximation; 8. Stability under Constantly Acting Disturbances; 9. Lyapunov's Second Method for Equations of Neutral Type; 10. Absolute Stability; Chapter IV. Periodic Solutions; 1. Some Properties of Periodic Solutions and Existence Theorems; 2. Periodic Solutions of Stationary, Linear, Homogeneous Equations; 3. Periodic Solutions of Linear Inhomogeneous Equations with Stationary Homogeneous Parts 4. Periodic Solutions of Linear Equations with Variable Coefficients and Deviating Arguments5. Periodic Solutionsof Quasilinear Equations; 6. Functionally Equivalent Systems of Differential Equations with a Deviating Argument; Chapter V. Stochastic Differential Equations with a Retarded Argument; 1. Basic Concepts; 2. Stability; 3. Stationary Solutions of Equations with a Delay; Chapter VI. Approximate Methods for the Integration of Differential Equations with a Deviating Argument; 1. General Remarks about the Application of Approximate Integration Methods 2. Euler's Method and Parabolic Methods3. Expansion in Powers of the Retardation; 4. Asymptotic Methods for Equations with Small Deviating Argument; 5. Iterative Methods; Chapter VII. Some Generalizations and a Brief Survey of Work in Other Areas of the Theory of Differential Equations with a Deviating Argument; 1. Some Generalizations; 2. Periodic Solutions; 3. Boundary-Value Problems; 4. Optimal Processes with a Retardation; 5. Stationary Points; BIBLIOGRAPHY; I. Monographs; II. Survey Articles; III. Journal Articles Introduction to the theory and application of differential equations with deviating arguments. Delay differential equations. http://id.loc.gov/authorities/subjects/sh85037892 Differential-difference equations. http://id.loc.gov/authorities/subjects/sh85037889 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Équations différentielles aux différences. Équations différentielles. Équations différentielles à retard. MATHEMATICS Differential Equations General. bisacsh Differential equations fast Differential-difference equations fast Delay differential equations fast Norkin, S. B. (Sim Borisovich) https://id.oclc.org/worldcat/entity/E39PCjCCBPt36Trjc7ypkMpqw3 http://id.loc.gov/authorities/names/n84803318 Print version: Ėlʹsgolʹt︠s︡, L. Ė (Lev Ėrnestovich). Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom. English. Introduction to the theory and application of differential equations with deviating arguments. New York : Academic Press, 1973 9780122377501 (DLC) 73000811 (OCoLC)700708 Mathematics in science and engineering ; v. 105. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297026 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/105 Volltext |
spellingShingle | Ėlʹsgolʹt︠s︡, L. Ė. (Lev Ėrnestovich) Introduction to the theory and application of differential equations with deviating arguments / Mathematics in science and engineering ; Front Cover; Introduction to the Theory and Application of Differential Equations with Deviating Arguments; Copyright Page; Contents; PREFACE; TRANSLATOR'S NOTE; INTRODUCTION; Chapter I. Basic Concepts and Existence Theorems; 1. Statement of the Basic Initial Value Problem. Classifications; 2. The Method of Steps; 3. Integrable Types of Equations with a Deviating Argument; 4. Existence and Uniqueness Theorems for the Solution of the Basic Initial Value Problem; 5. Some Specific Singularities of the Solutions of Equations with a Deviating Argument; Chapter II. Linear Equations 1. Some Properties of Linear Equations2. Linear Equations with Constant Coefficients and Constant Deviating Arguments; 3. The Characteristic Quasipolynomial; 4. The Expansion of the Solution into a Series of Basic Solutions; 5. Two-Sided Solutions; 6. The Homogeneous Initial Value Problem; 7. Some Types of Linear Equations with Variable Coefficients and Variable Deviating Arguments; Chapter III. Stability Theory; 1. Basic Concepts; 2. The Stability of Solutions to Stationary Linear Equations; 3. Conditions for Negativity of the Real Parts of All Roots of the Quasipolynomial 4. The Case of Small Deviating Arguments5. The Case of Large Deviating Arguments; 6. Lyapunov's Second Method; 7. Stability in the First Approximation; 8. Stability under Constantly Acting Disturbances; 9. Lyapunov's Second Method for Equations of Neutral Type; 10. Absolute Stability; Chapter IV. Periodic Solutions; 1. Some Properties of Periodic Solutions and Existence Theorems; 2. Periodic Solutions of Stationary, Linear, Homogeneous Equations; 3. Periodic Solutions of Linear Inhomogeneous Equations with Stationary Homogeneous Parts 4. Periodic Solutions of Linear Equations with Variable Coefficients and Deviating Arguments5. Periodic Solutionsof Quasilinear Equations; 6. Functionally Equivalent Systems of Differential Equations with a Deviating Argument; Chapter V. Stochastic Differential Equations with a Retarded Argument; 1. Basic Concepts; 2. Stability; 3. Stationary Solutions of Equations with a Delay; Chapter VI. Approximate Methods for the Integration of Differential Equations with a Deviating Argument; 1. General Remarks about the Application of Approximate Integration Methods 2. Euler's Method and Parabolic Methods3. Expansion in Powers of the Retardation; 4. Asymptotic Methods for Equations with Small Deviating Argument; 5. Iterative Methods; Chapter VII. Some Generalizations and a Brief Survey of Work in Other Areas of the Theory of Differential Equations with a Deviating Argument; 1. Some Generalizations; 2. Periodic Solutions; 3. Boundary-Value Problems; 4. Optimal Processes with a Retardation; 5. Stationary Points; BIBLIOGRAPHY; I. Monographs; II. Survey Articles; III. Journal Articles Delay differential equations. http://id.loc.gov/authorities/subjects/sh85037892 Differential-difference equations. http://id.loc.gov/authorities/subjects/sh85037889 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Équations différentielles aux différences. Équations différentielles. Équations différentielles à retard. MATHEMATICS Differential Equations General. bisacsh Differential equations fast Differential-difference equations fast Delay differential equations fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037892 http://id.loc.gov/authorities/subjects/sh85037889 http://id.loc.gov/authorities/subjects/sh85037890 |
title | Introduction to the theory and application of differential equations with deviating arguments / |
title_alt | Vvedenie v teorii︠u︡ different︠s︡ialʹnykh uravneniĭ s otkloni︠a︡i︠u︡shchimsi︠a︡ argumentom. |
title_auth | Introduction to the theory and application of differential equations with deviating arguments / |
title_exact_search | Introduction to the theory and application of differential equations with deviating arguments / |
title_full | Introduction to the theory and application of differential equations with deviating arguments / L.E. Ėlʹsgolʹt︠s︡ and S.B. Norkin ; translated by John L. Casti. |
title_fullStr | Introduction to the theory and application of differential equations with deviating arguments / L.E. Ėlʹsgolʹt︠s︡ and S.B. Norkin ; translated by John L. Casti. |
title_full_unstemmed | Introduction to the theory and application of differential equations with deviating arguments / L.E. Ėlʹsgolʹt︠s︡ and S.B. Norkin ; translated by John L. Casti. |
title_short | Introduction to the theory and application of differential equations with deviating arguments / |
title_sort | introduction to the theory and application of differential equations with deviating arguments |
topic | Delay differential equations. http://id.loc.gov/authorities/subjects/sh85037892 Differential-difference equations. http://id.loc.gov/authorities/subjects/sh85037889 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Équations différentielles aux différences. Équations différentielles. Équations différentielles à retard. MATHEMATICS Differential Equations General. bisacsh Differential equations fast Differential-difference equations fast Delay differential equations fast |
topic_facet | Delay differential equations. Differential-difference equations. Differential equations. Équations différentielles aux différences. Équations différentielles. Équations différentielles à retard. MATHEMATICS Differential Equations General. Differential equations Differential-difference equations Delay differential equations |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297026 https://www.sciencedirect.com/science/bookseries/00765392/105 |
work_keys_str_mv | AT elʹsgolʹtsle vvedenievteoriiudifferentsialʹnykhuravneniisotkloniaiushchimsiaargumentom AT norkinsb vvedenievteoriiudifferentsialʹnykhuravneniisotkloniaiushchimsiaargumentom AT elʹsgolʹtsle introductiontothetheoryandapplicationofdifferentialequationswithdeviatingarguments AT norkinsb introductiontothetheoryandapplicationofdifferentialequationswithdeviatingarguments |