Theory of partial differential equations /:
Theory of partial differential equations.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1972.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 93. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Theory of partial differential equations. |
Beschreibung: | 1 online resource (xiv, 283 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 264-266) and index. |
ISBN: | 9780124495500 0124495508 9780080956022 0080956025 1282290398 9781282290396 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316552945 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1972 nyua ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d EBLCP |d IDEBK |d OCLCQ |d TEF |d OPELS |d OCLCQ |d OCLCO |d OCLCQ |d E7B |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d YDXCP |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d OCLCO |d SGP |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 646827719 |a 823843621 |a 823912383 |a 824099392 |a 824154815 | ||
020 | |a 9780124495500 |q (electronic bk.) | ||
020 | |a 0124495508 |q (electronic bk.) | ||
020 | |a 9780080956022 |q (electronic bk.) | ||
020 | |a 0080956025 |q (electronic bk.) | ||
020 | |a 1282290398 | ||
020 | |a 9781282290396 | ||
035 | |a (OCoLC)316552945 |z (OCoLC)646827719 |z (OCoLC)823843621 |z (OCoLC)823912383 |z (OCoLC)824099392 |z (OCoLC)824154815 | ||
050 | 4 | |a QA374 |b .L45 1972eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
072 | 7 | |a GPF |2 bicssc | |
082 | 7 | |a 515/.353 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lieberstein, H. Melvin. |0 http://id.loc.gov/authorities/names/n88669037 | |
245 | 1 | 0 | |a Theory of partial differential equations / |c H. Melvin Lieberstein. |
260 | |a New York : |b Academic Press, |c 1972. | ||
300 | |a 1 online resource (xiv, 283 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 93 | |
504 | |a Includes bibliographical references (pages 264-266) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Theory of partial differential equations. | ||
505 | 0 | |a Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations | |
505 | 8 | |a Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle | |
505 | 8 | |a 4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness | |
505 | 8 | |a 9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES | |
505 | 8 | |a Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Differential equations, Partial |2 fast | |
776 | 0 | 8 | |i Print version: |a Lieberstein, H. Melvin. |t Theory of partial differential equations. |d New York, Academic Press, 1972 |z 9780124495500 |w (DLC) 72084278 |w (OCoLC)482715 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 93. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297117 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/93 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL453064 | ||
938 | |a ebrary |b EBRY |n ebr10329538 | ||
938 | |a EBSCOhost |b EBSC |n 297117 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 229039 | ||
938 | |a YBP Library Services |b YANK |n 3101813 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316552945 |
---|---|
_version_ | 1816881689216942081 |
adam_text | |
any_adam_object | |
author | Lieberstein, H. Melvin |
author_GND | http://id.loc.gov/authorities/names/n88669037 |
author_facet | Lieberstein, H. Melvin |
author_role | |
author_sort | Lieberstein, H. Melvin |
author_variant | h m l hm hml |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA374 |
callnumber-raw | QA374 .L45 1972eb |
callnumber-search | QA374 .L45 1972eb |
callnumber-sort | QA 3374 L45 41972EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle 4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness 9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function |
ctrlnum | (OCoLC)316552945 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05568cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316552945</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1972 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEF</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646827719</subfield><subfield code="a">823843621</subfield><subfield code="a">823912383</subfield><subfield code="a">824099392</subfield><subfield code="a">824154815</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124495500</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0124495508</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956022</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956025</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282290398</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282290396</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316552945</subfield><subfield code="z">(OCoLC)646827719</subfield><subfield code="z">(OCoLC)823843621</subfield><subfield code="z">(OCoLC)823912383</subfield><subfield code="z">(OCoLC)824099392</subfield><subfield code="z">(OCoLC)824154815</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA374</subfield><subfield code="b">.L45 1972eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">GPF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lieberstein, H. Melvin.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88669037</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of partial differential equations /</subfield><subfield code="c">H. Melvin Lieberstein.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1972.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 283 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 93</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 264-266) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Theory of partial differential equations.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lieberstein, H. Melvin.</subfield><subfield code="t">Theory of partial differential equations.</subfield><subfield code="d">New York, Academic Press, 1972</subfield><subfield code="z">9780124495500</subfield><subfield code="w">(DLC) 72084278</subfield><subfield code="w">(OCoLC)482715</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 93.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297117</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/93</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL453064</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329538</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297117</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">229039</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101813</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316552945 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780124495500 0124495508 9780080956022 0080956025 1282290398 9781282290396 |
language | English |
oclc_num | 316552945 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 283 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Lieberstein, H. Melvin. http://id.loc.gov/authorities/names/n88669037 Theory of partial differential equations / H. Melvin Lieberstein. New York : Academic Press, 1972. 1 online resource (xiv, 283 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 93 Includes bibliographical references (pages 264-266) and index. Print version record. Theory of partial differential equations. Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle 4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness 9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Partial fast Print version: Lieberstein, H. Melvin. Theory of partial differential equations. New York, Academic Press, 1972 9780124495500 (DLC) 72084278 (OCoLC)482715 Mathematics in science and engineering ; v. 93. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297117 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/93 Volltext |
spellingShingle | Lieberstein, H. Melvin Theory of partial differential equations / Mathematics in science and engineering ; Front Cover; Theory of Partial Differential Equations; Copyright Page; Contents; PREFACE; PART I: AN OUTLINE; Chapter 1. The Theory of Characteristics, Classification, and the Wave Equation in E2; 1. D' Alembert Solution of the Cauchy Problem for the Homogeneous Wave Equation in E2; 2. Nomenclature; 3. Theory of Characteristics and Type Classification for Equations in E2; 4. Considerations Special to Nonlinear Cases; 5. Compatibility Relations and the Finite-Difference Method of Characteristics; 6. Systems Larger Than Two by Two; 7. Flow and Transmission Line Equations Chapter 2. Various Boundary-Value Problems for the Homogeneous Wave Equation in E21. The Cauchy or Initial-Value Problem; 2. The Characteristic Boundary-Value Problem; 3. The Mixed Boundary-Value Problem; 4. The Goursat Problem; 5. The Vibrating String Problem; 6. Uniqueness of the Vibrating String Problem; 7. The Dirichlet Problem for the Wave Equation?; Chapter 3. Various Boundary-Value Problems for the Laplace Equation in E2; 1. The Dirichlet Problem; 2. Relation to Analytic Functions of a Complex Variable; 3. Solution of the Dirichlet Problem on a Circle 4. Uniqueness for Regular Solutions of the Dirichlet and Neumann Problem on a Rectangle5. Approximation Methods for the Dirichlet Problem in E2; 6. The Cauchy Problem for the Laplace Equation; Chapter 4. Various Boundary-Value Problems for Simple Equations of Parabolic Type; 1. The Slab Problem; 2. An Alternative Proof of Uniqueness; 3. Solution by Separation of Variables; 4. Instability for Negative Times; 5. Cauchy Problem on the Infinite Line; 6. Unique Continuation; 7. Poiseuille Flow; 8. Mean-Square Asymptotic Uniqueness 9. Solution of a Dirichlet Problem for an Equation of Parabolic TypeChapter 5. Expectations for Well-Posed Problems; 1. Sense of Hadamard; 2. Expectations; 3. Boundary-Value Problems for Equations of Elliptic-Parabolic Type; 4. Existence as the Limit of Regular Solutions; 5. The Impulse Problem as a Prototype of a Solution in Terms of Distributions; 6. The Green Identities; 7. The Generalized Green Identity; 8. Lp-Weak Solutions; 9. Prospectus; 10. The Tricomi Problem; PART II: SOME CLASSICAL RESULTS FOR NONLINEAR EQUATIONS IN TWO INDEPENDENT VARIABLES Chapter 6. Existence and Uniqueness Considerations for the Nonhomogeneous Wave Equation in E21. Notation; 2. Existence for the Characteristic Problem; 3. Comments on Continuous Dependence and Error Bounds; 4. An Example Where the Theorem as Stated Does Not Apply; 5. A Theorem Using the Lipschitz Condition on a Bounded Region in E5; 6. Existence Theorem for the Cauchy Problem of the Nonhomogeneous (Nonlinear) Wave Equation in E2; Chapter 7. The Riemann Method; 1. Three Forms of the Generalized Green Identity; 2. Riemann's Function Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Partial fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037912 |
title | Theory of partial differential equations / |
title_auth | Theory of partial differential equations / |
title_exact_search | Theory of partial differential equations / |
title_full | Theory of partial differential equations / H. Melvin Lieberstein. |
title_fullStr | Theory of partial differential equations / H. Melvin Lieberstein. |
title_full_unstemmed | Theory of partial differential equations / H. Melvin Lieberstein. |
title_short | Theory of partial differential equations / |
title_sort | theory of partial differential equations |
topic | Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Partial fast |
topic_facet | Differential equations, Partial. Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. Differential equations, Partial |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297117 https://www.sciencedirect.com/science/bookseries/00765392/93 |
work_keys_str_mv | AT liebersteinhmelvin theoryofpartialdifferentialequations |