Nonserial dynamic programming /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1972.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 91. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 1 online resource (xii, 235 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 229-232) and index. |
ISBN: | 9780120934508 0120934507 9780080956008 0080956009 1282289918 9781282289918 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316552943 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1972 nyua ob 001 0 eng d | ||
010 | |z 78187237 | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OCLCQ |d TEF |d OPELS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d E7B |d DEBSZ |d OCLCQ |d AGLDB |d LIP |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d OCLCO |d SGP |d OCLCQ |d OCL |d OCLCO |d OCLCL |d COA |d OCLCQ | ||
019 | |a 646827393 |a 823843578 |a 823912310 |a 824099350 |a 824154770 |a 1340109731 | ||
020 | |a 9780120934508 |q (electronic bk.) | ||
020 | |a 0120934507 |q (electronic bk.) | ||
020 | |a 9780080956008 |q (electronic bk.) | ||
020 | |a 0080956009 |q (electronic bk.) | ||
020 | |a 1282289918 | ||
020 | |a 9781282289918 | ||
024 | 8 | |a (WaSeSS)ssj0000304550 | |
035 | |a (OCoLC)316552943 |z (OCoLC)646827393 |z (OCoLC)823843578 |z (OCoLC)823912310 |z (OCoLC)824099350 |z (OCoLC)824154770 |z (OCoLC)1340109731 | ||
050 | 4 | |a T57.83 |b .B47 1972eb | |
072 | 7 | |a MAT |x 017000 |2 bisacsh | |
072 | 7 | |a GPF |2 bicssc | |
082 | 7 | |a 519.7/03 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Bertelè, Umberto. |0 http://id.loc.gov/authorities/names/n82127873 | |
245 | 1 | 0 | |a Nonserial dynamic programming / |c Umberto Bertelè and Francesco Brioschi. |
260 | |a New York : |b Academic Press, |c 1972. | ||
300 | |a 1 online resource (xii, 235 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rdaft |0 http://rdaregistry.info/termList/fileType/1002. | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 91 | |
504 | |a Includes bibliographical references (pages 229-232) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Nonserial Dynamic Programming; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Nonserial Problems; 1.1 Introduction; 1.2 The Serial Unconstrained Problem; 1.3 A Problem in Inventory Theory; 1.4 The Nonserial Unconstrained Problem and Its Graph-Theoretical Representation; 1.5 A Problem in Pattern Recognition; 1.6 A Problem in Traffic Control; 1.7 The Parametric Unconstrained Problem; 1.8 The Constrained Problem; 1.9 Introduction to Nonserial Dynamic Programming and Plan of the Book | |
505 | 8 | |a Chapter 2. The Elimination of Variables One by One: Description of the Procedure2.1 Introduction; 2.2 Serial Dynamic Programming; 2.3 Nonserial Dynamic Programming: The Description of the Solution of the Primary Problem; 2.4 An Example; 2.5 The Secondary Optimization Problem; 2.6 The Elimination Process; 2.7 Criterion Functions; 2.8 The Final Theorem and Other Dominance Relations among Elimination Orderings; 2.9 The Correspondence Theorem; 2.10 The Parametric Unconstrained Problem; Chapter 3. The Elimination of Variables One by One: Properties and Algorithms; 3.1 Introduction | |
505 | 8 | |a 3.2 Heuristic Algorithms3.3 Optimal Path Algorithms; 3.4 Computational Implications of the Final Theorem; 3.5 Further Dominance Relations among Elimination Orderings; 3.6 The Descendance Theorem; 3.7 The Initial Theorem; 3.8 The Separating Set Theorem; 3.9 Connections between Structure and Dimension in a Graph; 3.10 Upper and Lower Bounds to the Dimension; 3.11 A Branch and Bound Algorithm; Chapter 4. The Elimination of Variables in Blocks; 4.1 Introduction; 4.2 The Description of the Procedure for the Solution of the Primary Problem; 4.3 An Example; 4.4 The Secondary Optimization Problem | |
505 | 8 | |a 4.5 The Block Elimination Process4.6 Some General Properties; 4.7 The Final Theorem; 4.8 The Descendance, Initial, and Separating Set Theorems; 4.9 Bounds and Algorithms: Some Hints; 4.10 The Correspondence Theorem; 4.11 The Parametric Unconstrained ProbIem; 4.12 Concluding Remarks; Chapter 5. Multilevel Elimination Procedures; 5.1 Introduction; 5.2 Multilevel Elimination Procedures for the Solution of the Primary Problem; 5.3 An Example; 5.4 The Secondary Optimization Problem; 5.5 The Multilevel Elimination Process; 5.6 The Final Theorem; 5.7 Some General Properties | |
505 | 8 | |a 5.8 Heuristic Algorithms: Some Hints5.9 The Correspondence Theorem; Chapter 6. Constrained Problems; 6.1 Introduction; 6.2 A Penalty Function Approach; 6.3 The Elimination of Variables One by One: Description of the Procedure; 6.4 An Example; 6.5 The Secondary Optimization Problem; 6.6 Univocal Constraints; 6.7 An Example; 6.8 Dynamic Systems and Other Applications : The Block Diagram Representation; 6.9 An Example; 6.10 A Discussion about Possible Improvements of the Optimization Procedures in Some Special Cases; 6.11 An Allocation Problem; Appendix A: Review of Graph Theory; List of Symbols | |
650 | 0 | |a Dynamic programming. |0 http://id.loc.gov/authorities/subjects/sh85040313 | |
650 | 0 | |a Programming (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85107312 | |
650 | 0 | |a Mathematical optimization. |0 http://id.loc.gov/authorities/subjects/sh85082127 | |
650 | 6 | |a Programmation (Mathématiques) | |
650 | 6 | |a Optimisation mathématique. | |
650 | 6 | |a Programmation dynamique. | |
650 | 7 | |a MATHEMATICS |x Linear & Nonlinear Programming. |2 bisacsh | |
650 | 7 | |a Programming (Mathematics) |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Dynamic programming |2 fast | |
700 | 1 | |a Brioschi, Francesco, |d 1938- |1 https://id.oclc.org/worldcat/entity/E39PCjM4TQfThQgYvhrDrVXTpP |0 http://id.loc.gov/authorities/names/n82127875 | |
776 | 0 | 8 | |i Print version: |a Bertelè, Umberto. |t Nonserial dynamic programming. |d New York : Academic Press, 1972 |z 0120934507 |z 9780120934508 |w (DLC) 78187237 |w (OCoLC)496941 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 91. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297006 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/91 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL452940 | ||
938 | |a ebrary |b EBRY |n ebr10329376 | ||
938 | |a EBSCOhost |b EBSC |n 297006 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 228991 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316552943 |
---|---|
_version_ | 1816881689208553472 |
adam_text | |
any_adam_object | |
author | Bertelè, Umberto |
author2 | Brioschi, Francesco, 1938- |
author2_role | |
author2_variant | f b fb |
author_GND | http://id.loc.gov/authorities/names/n82127873 http://id.loc.gov/authorities/names/n82127875 |
author_facet | Bertelè, Umberto Brioschi, Francesco, 1938- |
author_role | |
author_sort | Bertelè, Umberto |
author_variant | u b ub |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | T57 |
callnumber-raw | T57.83 .B47 1972eb |
callnumber-search | T57.83 .B47 1972eb |
callnumber-sort | T 257.83 B47 41972EB |
callnumber-subject | T - General Technology |
collection | ZDB-4-EBA |
contents | Front Cover; Nonserial Dynamic Programming; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Nonserial Problems; 1.1 Introduction; 1.2 The Serial Unconstrained Problem; 1.3 A Problem in Inventory Theory; 1.4 The Nonserial Unconstrained Problem and Its Graph-Theoretical Representation; 1.5 A Problem in Pattern Recognition; 1.6 A Problem in Traffic Control; 1.7 The Parametric Unconstrained Problem; 1.8 The Constrained Problem; 1.9 Introduction to Nonserial Dynamic Programming and Plan of the Book Chapter 2. The Elimination of Variables One by One: Description of the Procedure2.1 Introduction; 2.2 Serial Dynamic Programming; 2.3 Nonserial Dynamic Programming: The Description of the Solution of the Primary Problem; 2.4 An Example; 2.5 The Secondary Optimization Problem; 2.6 The Elimination Process; 2.7 Criterion Functions; 2.8 The Final Theorem and Other Dominance Relations among Elimination Orderings; 2.9 The Correspondence Theorem; 2.10 The Parametric Unconstrained Problem; Chapter 3. The Elimination of Variables One by One: Properties and Algorithms; 3.1 Introduction 3.2 Heuristic Algorithms3.3 Optimal Path Algorithms; 3.4 Computational Implications of the Final Theorem; 3.5 Further Dominance Relations among Elimination Orderings; 3.6 The Descendance Theorem; 3.7 The Initial Theorem; 3.8 The Separating Set Theorem; 3.9 Connections between Structure and Dimension in a Graph; 3.10 Upper and Lower Bounds to the Dimension; 3.11 A Branch and Bound Algorithm; Chapter 4. The Elimination of Variables in Blocks; 4.1 Introduction; 4.2 The Description of the Procedure for the Solution of the Primary Problem; 4.3 An Example; 4.4 The Secondary Optimization Problem 4.5 The Block Elimination Process4.6 Some General Properties; 4.7 The Final Theorem; 4.8 The Descendance, Initial, and Separating Set Theorems; 4.9 Bounds and Algorithms: Some Hints; 4.10 The Correspondence Theorem; 4.11 The Parametric Unconstrained ProbIem; 4.12 Concluding Remarks; Chapter 5. Multilevel Elimination Procedures; 5.1 Introduction; 5.2 Multilevel Elimination Procedures for the Solution of the Primary Problem; 5.3 An Example; 5.4 The Secondary Optimization Problem; 5.5 The Multilevel Elimination Process; 5.6 The Final Theorem; 5.7 Some General Properties 5.8 Heuristic Algorithms: Some Hints5.9 The Correspondence Theorem; Chapter 6. Constrained Problems; 6.1 Introduction; 6.2 A Penalty Function Approach; 6.3 The Elimination of Variables One by One: Description of the Procedure; 6.4 An Example; 6.5 The Secondary Optimization Problem; 6.6 Univocal Constraints; 6.7 An Example; 6.8 Dynamic Systems and Other Applications : The Block Diagram Representation; 6.9 An Example; 6.10 A Discussion about Possible Improvements of the Optimization Procedures in Some Special Cases; 6.11 An Allocation Problem; Appendix A: Review of Graph Theory; List of Symbols |
ctrlnum | (OCoLC)316552943 |
dewey-full | 519.7/03 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.7/03 |
dewey-search | 519.7/03 |
dewey-sort | 3519.7 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06254cam a2200721 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316552943</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1972 nyua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 78187237 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEF</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">LIP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">COA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646827393</subfield><subfield code="a">823843578</subfield><subfield code="a">823912310</subfield><subfield code="a">824099350</subfield><subfield code="a">824154770</subfield><subfield code="a">1340109731</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120934508</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120934507</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956008</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956009</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282289918</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282289918</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">(WaSeSS)ssj0000304550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316552943</subfield><subfield code="z">(OCoLC)646827393</subfield><subfield code="z">(OCoLC)823843578</subfield><subfield code="z">(OCoLC)823912310</subfield><subfield code="z">(OCoLC)824099350</subfield><subfield code="z">(OCoLC)824154770</subfield><subfield code="z">(OCoLC)1340109731</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T57.83</subfield><subfield code="b">.B47 1972eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">017000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">GPF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.7/03</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bertelè, Umberto.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82127873</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonserial dynamic programming /</subfield><subfield code="c">Umberto Bertelè and Francesco Brioschi.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1972.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 235 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield><subfield code="0">http://rdaregistry.info/termList/fileType/1002.</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 91</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 229-232) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Nonserial Dynamic Programming; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Nonserial Problems; 1.1 Introduction; 1.2 The Serial Unconstrained Problem; 1.3 A Problem in Inventory Theory; 1.4 The Nonserial Unconstrained Problem and Its Graph-Theoretical Representation; 1.5 A Problem in Pattern Recognition; 1.6 A Problem in Traffic Control; 1.7 The Parametric Unconstrained Problem; 1.8 The Constrained Problem; 1.9 Introduction to Nonserial Dynamic Programming and Plan of the Book</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 2. The Elimination of Variables One by One: Description of the Procedure2.1 Introduction; 2.2 Serial Dynamic Programming; 2.3 Nonserial Dynamic Programming: The Description of the Solution of the Primary Problem; 2.4 An Example; 2.5 The Secondary Optimization Problem; 2.6 The Elimination Process; 2.7 Criterion Functions; 2.8 The Final Theorem and Other Dominance Relations among Elimination Orderings; 2.9 The Correspondence Theorem; 2.10 The Parametric Unconstrained Problem; Chapter 3. The Elimination of Variables One by One: Properties and Algorithms; 3.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Heuristic Algorithms3.3 Optimal Path Algorithms; 3.4 Computational Implications of the Final Theorem; 3.5 Further Dominance Relations among Elimination Orderings; 3.6 The Descendance Theorem; 3.7 The Initial Theorem; 3.8 The Separating Set Theorem; 3.9 Connections between Structure and Dimension in a Graph; 3.10 Upper and Lower Bounds to the Dimension; 3.11 A Branch and Bound Algorithm; Chapter 4. The Elimination of Variables in Blocks; 4.1 Introduction; 4.2 The Description of the Procedure for the Solution of the Primary Problem; 4.3 An Example; 4.4 The Secondary Optimization Problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5 The Block Elimination Process4.6 Some General Properties; 4.7 The Final Theorem; 4.8 The Descendance, Initial, and Separating Set Theorems; 4.9 Bounds and Algorithms: Some Hints; 4.10 The Correspondence Theorem; 4.11 The Parametric Unconstrained ProbIem; 4.12 Concluding Remarks; Chapter 5. Multilevel Elimination Procedures; 5.1 Introduction; 5.2 Multilevel Elimination Procedures for the Solution of the Primary Problem; 5.3 An Example; 5.4 The Secondary Optimization Problem; 5.5 The Multilevel Elimination Process; 5.6 The Final Theorem; 5.7 Some General Properties</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.8 Heuristic Algorithms: Some Hints5.9 The Correspondence Theorem; Chapter 6. Constrained Problems; 6.1 Introduction; 6.2 A Penalty Function Approach; 6.3 The Elimination of Variables One by One: Description of the Procedure; 6.4 An Example; 6.5 The Secondary Optimization Problem; 6.6 Univocal Constraints; 6.7 An Example; 6.8 Dynamic Systems and Other Applications : The Block Diagram Representation; 6.9 An Example; 6.10 A Discussion about Possible Improvements of the Optimization Procedures in Some Special Cases; 6.11 An Allocation Problem; Appendix A: Review of Graph Theory; List of Symbols</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Dynamic programming.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85040313</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Programming (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107312</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical optimization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082127</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Programmation (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optimisation mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Programmation dynamique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Linear & Nonlinear Programming.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Programming (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamic programming</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brioschi, Francesco,</subfield><subfield code="d">1938-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjM4TQfThQgYvhrDrVXTpP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82127875</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bertelè, Umberto.</subfield><subfield code="t">Nonserial dynamic programming.</subfield><subfield code="d">New York : Academic Press, 1972</subfield><subfield code="z">0120934507</subfield><subfield code="z">9780120934508</subfield><subfield code="w">(DLC) 78187237</subfield><subfield code="w">(OCoLC)496941</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 91.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/91</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL452940</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329376</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297006</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">228991</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316552943 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780120934508 0120934507 9780080956008 0080956009 1282289918 9781282289918 |
language | English |
oclc_num | 316552943 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 235 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Bertelè, Umberto. http://id.loc.gov/authorities/names/n82127873 Nonserial dynamic programming / Umberto Bertelè and Francesco Brioschi. New York : Academic Press, 1972. 1 online resource (xii, 235 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rdaft http://rdaregistry.info/termList/fileType/1002. Mathematics in science and engineering ; v. 91 Includes bibliographical references (pages 229-232) and index. Print version record. Front Cover; Nonserial Dynamic Programming; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Nonserial Problems; 1.1 Introduction; 1.2 The Serial Unconstrained Problem; 1.3 A Problem in Inventory Theory; 1.4 The Nonserial Unconstrained Problem and Its Graph-Theoretical Representation; 1.5 A Problem in Pattern Recognition; 1.6 A Problem in Traffic Control; 1.7 The Parametric Unconstrained Problem; 1.8 The Constrained Problem; 1.9 Introduction to Nonserial Dynamic Programming and Plan of the Book Chapter 2. The Elimination of Variables One by One: Description of the Procedure2.1 Introduction; 2.2 Serial Dynamic Programming; 2.3 Nonserial Dynamic Programming: The Description of the Solution of the Primary Problem; 2.4 An Example; 2.5 The Secondary Optimization Problem; 2.6 The Elimination Process; 2.7 Criterion Functions; 2.8 The Final Theorem and Other Dominance Relations among Elimination Orderings; 2.9 The Correspondence Theorem; 2.10 The Parametric Unconstrained Problem; Chapter 3. The Elimination of Variables One by One: Properties and Algorithms; 3.1 Introduction 3.2 Heuristic Algorithms3.3 Optimal Path Algorithms; 3.4 Computational Implications of the Final Theorem; 3.5 Further Dominance Relations among Elimination Orderings; 3.6 The Descendance Theorem; 3.7 The Initial Theorem; 3.8 The Separating Set Theorem; 3.9 Connections between Structure and Dimension in a Graph; 3.10 Upper and Lower Bounds to the Dimension; 3.11 A Branch and Bound Algorithm; Chapter 4. The Elimination of Variables in Blocks; 4.1 Introduction; 4.2 The Description of the Procedure for the Solution of the Primary Problem; 4.3 An Example; 4.4 The Secondary Optimization Problem 4.5 The Block Elimination Process4.6 Some General Properties; 4.7 The Final Theorem; 4.8 The Descendance, Initial, and Separating Set Theorems; 4.9 Bounds and Algorithms: Some Hints; 4.10 The Correspondence Theorem; 4.11 The Parametric Unconstrained ProbIem; 4.12 Concluding Remarks; Chapter 5. Multilevel Elimination Procedures; 5.1 Introduction; 5.2 Multilevel Elimination Procedures for the Solution of the Primary Problem; 5.3 An Example; 5.4 The Secondary Optimization Problem; 5.5 The Multilevel Elimination Process; 5.6 The Final Theorem; 5.7 Some General Properties 5.8 Heuristic Algorithms: Some Hints5.9 The Correspondence Theorem; Chapter 6. Constrained Problems; 6.1 Introduction; 6.2 A Penalty Function Approach; 6.3 The Elimination of Variables One by One: Description of the Procedure; 6.4 An Example; 6.5 The Secondary Optimization Problem; 6.6 Univocal Constraints; 6.7 An Example; 6.8 Dynamic Systems and Other Applications : The Block Diagram Representation; 6.9 An Example; 6.10 A Discussion about Possible Improvements of the Optimization Procedures in Some Special Cases; 6.11 An Allocation Problem; Appendix A: Review of Graph Theory; List of Symbols Dynamic programming. http://id.loc.gov/authorities/subjects/sh85040313 Programming (Mathematics) http://id.loc.gov/authorities/subjects/sh85107312 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Programmation (Mathématiques) Optimisation mathématique. Programmation dynamique. MATHEMATICS Linear & Nonlinear Programming. bisacsh Programming (Mathematics) fast Mathematical optimization fast Dynamic programming fast Brioschi, Francesco, 1938- https://id.oclc.org/worldcat/entity/E39PCjM4TQfThQgYvhrDrVXTpP http://id.loc.gov/authorities/names/n82127875 Print version: Bertelè, Umberto. Nonserial dynamic programming. New York : Academic Press, 1972 0120934507 9780120934508 (DLC) 78187237 (OCoLC)496941 Mathematics in science and engineering ; v. 91. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297006 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/91 Volltext |
spellingShingle | Bertelè, Umberto Nonserial dynamic programming / Mathematics in science and engineering ; Front Cover; Nonserial Dynamic Programming; Copyright Page; Table of Contents; Preface; Acknowledgments; Chapter 1. Nonserial Problems; 1.1 Introduction; 1.2 The Serial Unconstrained Problem; 1.3 A Problem in Inventory Theory; 1.4 The Nonserial Unconstrained Problem and Its Graph-Theoretical Representation; 1.5 A Problem in Pattern Recognition; 1.6 A Problem in Traffic Control; 1.7 The Parametric Unconstrained Problem; 1.8 The Constrained Problem; 1.9 Introduction to Nonserial Dynamic Programming and Plan of the Book Chapter 2. The Elimination of Variables One by One: Description of the Procedure2.1 Introduction; 2.2 Serial Dynamic Programming; 2.3 Nonserial Dynamic Programming: The Description of the Solution of the Primary Problem; 2.4 An Example; 2.5 The Secondary Optimization Problem; 2.6 The Elimination Process; 2.7 Criterion Functions; 2.8 The Final Theorem and Other Dominance Relations among Elimination Orderings; 2.9 The Correspondence Theorem; 2.10 The Parametric Unconstrained Problem; Chapter 3. The Elimination of Variables One by One: Properties and Algorithms; 3.1 Introduction 3.2 Heuristic Algorithms3.3 Optimal Path Algorithms; 3.4 Computational Implications of the Final Theorem; 3.5 Further Dominance Relations among Elimination Orderings; 3.6 The Descendance Theorem; 3.7 The Initial Theorem; 3.8 The Separating Set Theorem; 3.9 Connections between Structure and Dimension in a Graph; 3.10 Upper and Lower Bounds to the Dimension; 3.11 A Branch and Bound Algorithm; Chapter 4. The Elimination of Variables in Blocks; 4.1 Introduction; 4.2 The Description of the Procedure for the Solution of the Primary Problem; 4.3 An Example; 4.4 The Secondary Optimization Problem 4.5 The Block Elimination Process4.6 Some General Properties; 4.7 The Final Theorem; 4.8 The Descendance, Initial, and Separating Set Theorems; 4.9 Bounds and Algorithms: Some Hints; 4.10 The Correspondence Theorem; 4.11 The Parametric Unconstrained ProbIem; 4.12 Concluding Remarks; Chapter 5. Multilevel Elimination Procedures; 5.1 Introduction; 5.2 Multilevel Elimination Procedures for the Solution of the Primary Problem; 5.3 An Example; 5.4 The Secondary Optimization Problem; 5.5 The Multilevel Elimination Process; 5.6 The Final Theorem; 5.7 Some General Properties 5.8 Heuristic Algorithms: Some Hints5.9 The Correspondence Theorem; Chapter 6. Constrained Problems; 6.1 Introduction; 6.2 A Penalty Function Approach; 6.3 The Elimination of Variables One by One: Description of the Procedure; 6.4 An Example; 6.5 The Secondary Optimization Problem; 6.6 Univocal Constraints; 6.7 An Example; 6.8 Dynamic Systems and Other Applications : The Block Diagram Representation; 6.9 An Example; 6.10 A Discussion about Possible Improvements of the Optimization Procedures in Some Special Cases; 6.11 An Allocation Problem; Appendix A: Review of Graph Theory; List of Symbols Dynamic programming. http://id.loc.gov/authorities/subjects/sh85040313 Programming (Mathematics) http://id.loc.gov/authorities/subjects/sh85107312 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Programmation (Mathématiques) Optimisation mathématique. Programmation dynamique. MATHEMATICS Linear & Nonlinear Programming. bisacsh Programming (Mathematics) fast Mathematical optimization fast Dynamic programming fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85040313 http://id.loc.gov/authorities/subjects/sh85107312 http://id.loc.gov/authorities/subjects/sh85082127 |
title | Nonserial dynamic programming / |
title_auth | Nonserial dynamic programming / |
title_exact_search | Nonserial dynamic programming / |
title_full | Nonserial dynamic programming / Umberto Bertelè and Francesco Brioschi. |
title_fullStr | Nonserial dynamic programming / Umberto Bertelè and Francesco Brioschi. |
title_full_unstemmed | Nonserial dynamic programming / Umberto Bertelè and Francesco Brioschi. |
title_short | Nonserial dynamic programming / |
title_sort | nonserial dynamic programming |
topic | Dynamic programming. http://id.loc.gov/authorities/subjects/sh85040313 Programming (Mathematics) http://id.loc.gov/authorities/subjects/sh85107312 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Programmation (Mathématiques) Optimisation mathématique. Programmation dynamique. MATHEMATICS Linear & Nonlinear Programming. bisacsh Programming (Mathematics) fast Mathematical optimization fast Dynamic programming fast |
topic_facet | Dynamic programming. Programming (Mathematics) Mathematical optimization. Programmation (Mathématiques) Optimisation mathématique. Programmation dynamique. MATHEMATICS Linear & Nonlinear Programming. Mathematical optimization Dynamic programming |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297006 https://www.sciencedirect.com/science/bookseries/00765392/91 |
work_keys_str_mv | AT berteleumberto nonserialdynamicprogramming AT brioschifrancesco nonserialdynamicprogramming |