Universality in nonequilibrium lattice systems :: theoretical foundations /
Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore, SG :
World Scientific,
©2008.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems. |
Beschreibung: | 1 online resource (xix, 276 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812812296 9789812812292 128196090X 9781281960900 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316005566 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr zn||||||||| | ||
008 | 080418s2008 si a ob 001 0 eng d | ||
010 | |z 2008300550 | ||
040 | |a CDX |b eng |e pn |c CDX |d OCLCQ |d IDEBK |d OCLCQ |d STF |d OCLCQ |d M6U |d N$T |d E7B |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d OCLCQ |d LOA |d AGLDB |d MOR |d CCO |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d U3W |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d OCLCQ |d WYU |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d VT2 |d LEAUB |d UKCRE |d AJS |d OCLCO |d OCLCQ |d TUHNV |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 696629605 |a 815756608 |a 960208672 |a 961668760 |a 962577660 |a 966219878 |a 988503726 |a 991959216 |a 1037765012 |a 1038676490 |a 1045485081 |a 1055407376 |a 1066480210 |a 1081266227 |a 1153545742 |a 1243607493 | ||
020 | |a 9812812296 |q (electronic bk.) | ||
020 | |a 9789812812292 |q (electronic bk.) | ||
020 | |a 128196090X | ||
020 | |a 9781281960900 | ||
020 | |z 9789812812278 | ||
020 | |z 981281227X | ||
035 | |a (OCoLC)316005566 |z (OCoLC)696629605 |z (OCoLC)815756608 |z (OCoLC)960208672 |z (OCoLC)961668760 |z (OCoLC)962577660 |z (OCoLC)966219878 |z (OCoLC)988503726 |z (OCoLC)991959216 |z (OCoLC)1037765012 |z (OCoLC)1038676490 |z (OCoLC)1045485081 |z (OCoLC)1055407376 |z (OCoLC)1066480210 |z (OCoLC)1081266227 |z (OCoLC)1153545742 |z (OCoLC)1243607493 | ||
050 | 4 | |a QC174.85.S34 |b O36 2008eb | |
072 | 7 | |a SCI |x 075000 |2 bisacsh | |
072 | 7 | |a PHFC |2 bicssc | |
082 | 7 | |a 501.17 22 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ódor, Géza. | |
245 | 1 | 0 | |a Universality in nonequilibrium lattice systems : |b theoretical foundations / |c Géza Ódor. |
260 | |a Singapore, SG : |b World Scientific, |c ©2008. | ||
300 | |a 1 online resource (xix, 276 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
380 | |a Bibliography | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook. | |
520 | |a Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Scaling laws (Statistical physics) |0 http://id.loc.gov/authorities/subjects/sh88004950 | |
650 | 0 | |a Lattice theory. |0 http://id.loc.gov/authorities/subjects/sh85074991 | |
650 | 0 | |a Self-organizing systems. |0 http://id.loc.gov/authorities/subjects/sh85119773 | |
650 | 0 | |a Phase transformations (Statistical physics) |0 http://id.loc.gov/authorities/subjects/sh85100646 | |
650 | 0 | |a Differentiable dynamical systems. |0 http://id.loc.gov/authorities/subjects/sh85037882 | |
650 | 6 | |a Lois d'échelle (Physique statistique) | |
650 | 6 | |a Théorie des treillis. | |
650 | 6 | |a Systèmes auto-organisés. | |
650 | 6 | |a Transitions de phase. | |
650 | 6 | |a Dynamique différentiable. | |
650 | 7 | |a SCIENCE |x Philosophy & Social Aspects. |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Lattice theory |2 fast | |
650 | 7 | |a Phase transformations (Statistical physics) |2 fast | |
650 | 7 | |a Scaling laws (Statistical physics) |2 fast | |
650 | 7 | |a Self-organizing systems |2 fast | |
758 | |i has work: |a Universality in nonequilibrium lattice systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFHRKhTJRYm39g7hGXqQpX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ódor, Géza. |t Universality in nonequilibrium lattice systems. |d Singapore, SG : World Scientific, ©2008 |w (DLC) 2008300550 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521157 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521157 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24685679 | ||
938 | |a Coutts Information Services |b COUT |n 9672780 | ||
938 | |a EBSCOhost |b EBSC |n 521157 | ||
938 | |a YBP Library Services |b YANK |n 9975177 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316005566 |
---|---|
_version_ | 1829094640032153600 |
adam_text | |
any_adam_object | |
author | Ódor, Géza |
author_facet | Ódor, Géza |
author_role | |
author_sort | Ódor, Géza |
author_variant | g o go |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.85.S34 O36 2008eb |
callnumber-search | QC174.85.S34 O36 2008eb |
callnumber-sort | QC 3174.85 S34 O36 42008EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook. |
ctrlnum | (OCoLC)316005566 |
dewey-full | 501.1722 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 501 - Philosophy and theory |
dewey-raw | 501.17 22 |
dewey-search | 501.17 22 |
dewey-sort | 3501.17 222 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07870cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316005566</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr zn|||||||||</controlfield><controlfield tag="008">080418s2008 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2008300550</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M6U</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUHNV</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">696629605</subfield><subfield code="a">815756608</subfield><subfield code="a">960208672</subfield><subfield code="a">961668760</subfield><subfield code="a">962577660</subfield><subfield code="a">966219878</subfield><subfield code="a">988503726</subfield><subfield code="a">991959216</subfield><subfield code="a">1037765012</subfield><subfield code="a">1038676490</subfield><subfield code="a">1045485081</subfield><subfield code="a">1055407376</subfield><subfield code="a">1066480210</subfield><subfield code="a">1081266227</subfield><subfield code="a">1153545742</subfield><subfield code="a">1243607493</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812812296</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812812292</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128196090X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281960900</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812812278</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">981281227X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316005566</subfield><subfield code="z">(OCoLC)696629605</subfield><subfield code="z">(OCoLC)815756608</subfield><subfield code="z">(OCoLC)960208672</subfield><subfield code="z">(OCoLC)961668760</subfield><subfield code="z">(OCoLC)962577660</subfield><subfield code="z">(OCoLC)966219878</subfield><subfield code="z">(OCoLC)988503726</subfield><subfield code="z">(OCoLC)991959216</subfield><subfield code="z">(OCoLC)1037765012</subfield><subfield code="z">(OCoLC)1038676490</subfield><subfield code="z">(OCoLC)1045485081</subfield><subfield code="z">(OCoLC)1055407376</subfield><subfield code="z">(OCoLC)1066480210</subfield><subfield code="z">(OCoLC)1081266227</subfield><subfield code="z">(OCoLC)1153545742</subfield><subfield code="z">(OCoLC)1243607493</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.85.S34</subfield><subfield code="b">O36 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">075000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHFC</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">501.17 22</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ódor, Géza.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Universality in nonequilibrium lattice systems :</subfield><subfield code="b">theoretical foundations /</subfield><subfield code="c">Géza Ódor.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore, SG :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 276 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="380" ind1=" " ind2=" "><subfield code="a">Bibliography</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Scaling laws (Statistical physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88004950</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lattice theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85074991</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Self-organizing systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85119773</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85100646</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differentiable dynamical systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037882</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Lois d'échelle (Physique statistique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des treillis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes auto-organisés.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transitions de phase.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique différentiable.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Philosophy & Social Aspects.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Scaling laws (Statistical physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Self-organizing systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Universality in nonequilibrium lattice systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFHRKhTJRYm39g7hGXqQpX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ódor, Géza.</subfield><subfield code="t">Universality in nonequilibrium lattice systems.</subfield><subfield code="d">Singapore, SG : World Scientific, ©2008</subfield><subfield code="w">(DLC) 2008300550</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521157</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521157</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685679</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">9672780</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">521157</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9975177</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316005566 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:36:20Z |
institution | BVB |
isbn | 9812812296 9789812812292 128196090X 9781281960900 |
language | English |
oclc_num | 316005566 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 276 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific, |
record_format | marc |
spelling | Ódor, Géza. Universality in nonequilibrium lattice systems : theoretical foundations / Géza Ódor. Singapore, SG : World Scientific, ©2008. 1 online resource (xix, 276 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Bibliography Includes bibliographical references and index. 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook. Universal scaling behavior is an attractive feature in statistical physics because a wide range of models can be classified purely in terms of their collective behavior due to a diverging correlation length. This book provides a comprehensive overview of dynamical universality classes occurring in nonequilibrium systems defined on regular lattices. The factors determining these diverse universality classes have yet to be fully understood, but the book attempts to summarize our present knowledge, taking them into account systematically. The book helps the reader to navigate in the zoo of basic models and classes that were investigated in the past decades, using field theoretical formalism and topological diagrams of phase spaces. Based on a review in Rev. Mod. Phys. by the author, it incorporates surface growth classes, classes of spin models, percolation and multi-component system classes as well as damage spreading transitions. (The success of that review can be quantified by the more than one hundred independent citations of that paper since 2004.) The extensions in this book include new topics like local scale invariance, tricritical points, phase space topologies, nonperturbative renormalization group results and disordered systems that are discussed in more detail. This book also aims to be more pedagogical, providing more background and derivation of results. Topological phase space diagrams introduced by Kamenev (Physical Review E 2006) very recently are used as a guide for one-component, reaction-diffusion systems. Print version record. Scaling laws (Statistical physics) http://id.loc.gov/authorities/subjects/sh88004950 Lattice theory. http://id.loc.gov/authorities/subjects/sh85074991 Self-organizing systems. http://id.loc.gov/authorities/subjects/sh85119773 Phase transformations (Statistical physics) http://id.loc.gov/authorities/subjects/sh85100646 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Lois d'échelle (Physique statistique) Théorie des treillis. Systèmes auto-organisés. Transitions de phase. Dynamique différentiable. SCIENCE Philosophy & Social Aspects. bisacsh Differentiable dynamical systems fast Lattice theory fast Phase transformations (Statistical physics) fast Scaling laws (Statistical physics) fast Self-organizing systems fast has work: Universality in nonequilibrium lattice systems (Text) https://id.oclc.org/worldcat/entity/E39PCFHRKhTJRYm39g7hGXqQpX https://id.oclc.org/worldcat/ontology/hasWork Print version: Ódor, Géza. Universality in nonequilibrium lattice systems. Singapore, SG : World Scientific, ©2008 (DLC) 2008300550 |
spellingShingle | Ódor, Géza Universality in nonequilibrium lattice systems : theoretical foundations / 1. Introduction. 1.1. Critical exponents of equilibrium (thermal) systems. 1.2. Static percolation cluster exponents. 1.3. Dynamical critical exponents. 1.4. Crossover between classes. 1.5. Critical exponents and relations of spreading processes. 1.6. Field theoretical approach to reaction-diffusion systems. 1.7. The effect of disorder -- 2. Out of equilibrium classes. 2.1. Field theoretical description of dynamical classes at and below T[symbol]. 2.2. Dynamical classes at T[symbol]> 0. 2.3. Ising classes. 2.4. Potts classes. 2.5. XY model classes. 2.6. O(N) symmetric model classes -- 3. Genuine basic nonequilibrium classes with fluctuating ordered states. 3.1. Driven lattice gas (DLG) classes -- 4. Genuine basic nonequilibrium classes with absorbing state. 4.1. Mean-field classes of general nA[symbol](n+k)A, mA[symbol](m-l)A processes. 4.2. Directed percolation (DP) classes. 4.3. Generalized, n-particle contact processes. 4.4. Dynamical isotropic percolation (DIP) classes. 4.5. Voter model (VM) classes. 4.6. Parity conserving (PC) classes. 4.7. Classes in models with n <m production and m particle annihilation at [symbol]=0. 4.8. Classes in models with n <m production and m particle coagulation at [symbol]=0; reversible reactions (1R). 4.9. Generalized PC models. 4.10. Multiplicative noise classes -- 5. Scaling at first-order phase transitions. 5.1. Tricritical directed percolation classes (TDP). 5.2. Tricritical DIP classes -- 6. Universality classes of multi-component systems. 6.1. The A+B[symbol]Ø classes. 6.2. AA[symbol]Ø, BB[symbol]Ø with hard-core exclusion. 6.3. Symmetrical, multi-species A[symbol]+A[symbol][symbol]Ø(q-MAM) classes. 6.4. Heterogeneous, multi-species A[symbol]+A[symbol][symbol]Ø system. 6.5. Unidirectionally coupled ARW classes. 6.6. DP coupled to frozen field classes. 6.7. DP with coupled diffusive field classes. 6.8. BARWe with coupled non-diffusive field class. 6.9. DP with diffusive, conserved slave field classes. 6.10. DP with frozen, conserved slave field classes. 6.11. Coupled N-component DP classes. 6.12. Coupled N-component BARW2 classes. 6.13. Hard-core 2-BARW2 classes in one dimension -- 7. Surface-interface growth classes. 7.1. The random deposition class. 7.2. Edwards-Wilkinson (EW) classes. 7.3. Quench disordered EW classes (QEW). 7.4. Kardar-Parisi-Zhang (KPZ) classes. 7.5. Other continuum growth classes. 7.6. Unidirectionally coupled DP classes. 7.7. Unidirectionally coupled PC classes -- 8. Summary and outlook. Scaling laws (Statistical physics) http://id.loc.gov/authorities/subjects/sh88004950 Lattice theory. http://id.loc.gov/authorities/subjects/sh85074991 Self-organizing systems. http://id.loc.gov/authorities/subjects/sh85119773 Phase transformations (Statistical physics) http://id.loc.gov/authorities/subjects/sh85100646 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Lois d'échelle (Physique statistique) Théorie des treillis. Systèmes auto-organisés. Transitions de phase. Dynamique différentiable. SCIENCE Philosophy & Social Aspects. bisacsh Differentiable dynamical systems fast Lattice theory fast Phase transformations (Statistical physics) fast Scaling laws (Statistical physics) fast Self-organizing systems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh88004950 http://id.loc.gov/authorities/subjects/sh85074991 http://id.loc.gov/authorities/subjects/sh85119773 http://id.loc.gov/authorities/subjects/sh85100646 http://id.loc.gov/authorities/subjects/sh85037882 |
title | Universality in nonequilibrium lattice systems : theoretical foundations / |
title_auth | Universality in nonequilibrium lattice systems : theoretical foundations / |
title_exact_search | Universality in nonequilibrium lattice systems : theoretical foundations / |
title_full | Universality in nonequilibrium lattice systems : theoretical foundations / Géza Ódor. |
title_fullStr | Universality in nonequilibrium lattice systems : theoretical foundations / Géza Ódor. |
title_full_unstemmed | Universality in nonequilibrium lattice systems : theoretical foundations / Géza Ódor. |
title_short | Universality in nonequilibrium lattice systems : |
title_sort | universality in nonequilibrium lattice systems theoretical foundations |
title_sub | theoretical foundations / |
topic | Scaling laws (Statistical physics) http://id.loc.gov/authorities/subjects/sh88004950 Lattice theory. http://id.loc.gov/authorities/subjects/sh85074991 Self-organizing systems. http://id.loc.gov/authorities/subjects/sh85119773 Phase transformations (Statistical physics) http://id.loc.gov/authorities/subjects/sh85100646 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Lois d'échelle (Physique statistique) Théorie des treillis. Systèmes auto-organisés. Transitions de phase. Dynamique différentiable. SCIENCE Philosophy & Social Aspects. bisacsh Differentiable dynamical systems fast Lattice theory fast Phase transformations (Statistical physics) fast Scaling laws (Statistical physics) fast Self-organizing systems fast |
topic_facet | Scaling laws (Statistical physics) Lattice theory. Self-organizing systems. Phase transformations (Statistical physics) Differentiable dynamical systems. Lois d'échelle (Physique statistique) Théorie des treillis. Systèmes auto-organisés. Transitions de phase. Dynamique différentiable. SCIENCE Philosophy & Social Aspects. Differentiable dynamical systems Lattice theory Self-organizing systems |
work_keys_str_mv | AT odorgeza universalityinnonequilibriumlatticesystemstheoreticalfoundations |