Introduction to the mathematical theory of compressible flow /:
This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;Th...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2004.
|
Schriftenreihe: | Oxford lecture series in mathematics and its applications ;
27. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to. |
Beschreibung: | 1 online resource (xx, 506 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191523953 019152395X 1280845228 9781280845222 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn314216971 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr zn||||||||| | ||
008 | 040802s2004 enk ob 001 0 eng d | ||
010 | |z 2004301771 | ||
040 | |a CN8ML |b eng |e pn |c CN8ML |d OCLCQ |d N$T |d E7B |d OCLCQ |d IDEBK |d MERUC |d OCLCQ |d OCLCF |d OCLCO |d YDXCP |d EBLCP |d DEBSZ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d AGLDB |d OTZ |d OCLCQ |d JG0 |d OCLCQ |d CUY |d LOA |d COCUF |d ICG |d K6U |d ZCU |d STF |d WRM |d OCLCQ |d VTS |d CEF |d OCLCQ |d VT2 |d U3W |d AU@ |d LHU |d FVL |d OCLCQ |d WYU |d LVT |d YOU |d S9I |d TKN |d BRX |d W2U |d DKC |d OCLCQ |d CNTRU |d MT4IT |d UX1 |d UWK |d ADU |d SFB |d ESU |d UKCRE |d VLY |d CN6UV |d DGN |d AJS |d DKU |d SDF |d HS0 |d CNNOR |d CNKUC |d TUHNV |d QGK |d OCLCQ |d OCLCO |d MHW |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
015 | |a GBA4Y1057 |2 bnb | ||
015 | |a GBA4-Y1057 | ||
019 | |a 316719735 |a 455959151 |a 476257427 |a 646784817 |a 756878939 |a 1030820230 |a 1030844577 |a 1033543635 |a 1044945920 |a 1100564480 |a 1119044239 |a 1162014861 |a 1241804617 |a 1243581755 |a 1257368755 |a 1290109274 |a 1300470820 | ||
020 | |a 9780191523953 |q (electronic bk.) | ||
020 | |a 019152395X |q (electronic bk.) | ||
020 | |z 0198530846 |q (Cloth) | ||
020 | |a 1280845228 | ||
020 | |a 9781280845222 | ||
035 | |a (OCoLC)314216971 |z (OCoLC)316719735 |z (OCoLC)455959151 |z (OCoLC)476257427 |z (OCoLC)646784817 |z (OCoLC)756878939 |z (OCoLC)1030820230 |z (OCoLC)1030844577 |z (OCoLC)1033543635 |z (OCoLC)1044945920 |z (OCoLC)1100564480 |z (OCoLC)1119044239 |z (OCoLC)1162014861 |z (OCoLC)1241804617 |z (OCoLC)1243581755 |z (OCoLC)1257368755 |z (OCoLC)1290109274 |z (OCoLC)1300470820 | ||
050 | 4 | |a QA911 |b .N69 2004eb | |
055 | 1 | 3 | |a QA911 |b .N69 2004eb |
072 | 7 | |a TEC |x 021000 |2 bisacsh | |
082 | 7 | |a 620.1/064/015118 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Novotný, A. |0 http://id.loc.gov/authorities/names/nb2004302471 | |
245 | 1 | 0 | |a Introduction to the mathematical theory of compressible flow / |c A. Novotný, I. Straéskraba. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2004. | ||
300 | |a 1 online resource (xx, 506 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Oxford lecture series in mathematics and its applications ; |v 27 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to. | ||
505 | 0 | |a 1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces. | |
505 | 8 | |a 1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy. | |
505 | 8 | |a 1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models. | |
505 | 8 | |a 1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results. | |
505 | 8 | |a 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation. | |
546 | |a English. | ||
650 | 0 | |a Fluid dynamics |x Mathematical models. | |
650 | 0 | |a Compressibility. |0 http://id.loc.gov/authorities/subjects/sh85029439 | |
650 | 6 | |a Dynamique des fluides |x Modèles mathématiques. | |
650 | 6 | |a Compressibilité. | |
650 | 7 | |a compressibility. |2 aat | |
650 | 7 | |a compression. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Material Science. |2 bisacsh | |
650 | 7 | |a Compressibility |2 fast | |
650 | 7 | |a Fluid dynamics |x Mathematical models |2 fast | |
700 | 1 | |a Straéskraba, I. |q (Ivan) | |
758 | |i has work: |a Introduction to the mathematical theory of compressible flow (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGpWDYQxTGCb9WHv8Y4jG3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Novotný, A. |t Introduction to the mathematical theory of compressible flow. |d Oxford ; New York : Oxford University Press, 2004 |w (DLC) 2004301771 |
830 | 0 | |a Oxford lecture series in mathematics and its applications ; |v 27. |0 http://id.loc.gov/authorities/names/n94044383 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=264886 |3 Volltext |
880 | 8 | |6 505-00/(S |a 2.2.15 Quasilinear system -- 2.2.16 Local existence for a quasilinear system -- 2.2.17 Second grade approximations -- 2.2.18 Higher order energy estimates -- 2.2.19 Convergence of approximations -- 2.2.20 Uniqueness -- 2.2.21 Local existence for equations of an isentropic ideal gas -- 2.2.22 Existence of global smooth solutions for nonlinear hyperbolic systems -- 2.2.23 2 × 2 system of conservation laws, Riemann invariants -- 2.2.24 Plane wave solutions -- 2.2.25 Plane waves for the Euler system in 2D -- 2.3 Weak solutions -- 2.3.1 Blow up of classical solutions -- 2.3.2 Generalized formulation for systems of conservation laws -- 2.3.3 Piecewise smooth solutions -- 2.3.4 Entropy condition -- 2.3.5 Physical entropy -- 2.3.6 General parabolic approximation and the entropy condition -- 2.3.7 Entropy for a general scalar conservation law -- 2.3.8 Entropy for a 2 × 2 system of conservation laws in 1D -- 2.3.9 Entropy function for a p-system -- 2.3.10 Riemann problem -- 2.3.11 Riemann problem for 2 × 2 isentropic gas dynamics equations -- 2.3.12 Existence and uniqueness of admissible weak solution for a scalar conservation law -- 2.3.13 Plane waves admitting discontinuities -- 2.3.14 Existence of solutions to the 2 × 2 Euler system for an isentropic gas -- 2.3.15 Lax-Friedrichs difference approximations -- 2.3.16 Existence of approximations -- 2.3.17 Invariant regions for Riemann invariants -- 2.3.18 Compactness argument -- 2.3.19 Characterization of the weak limit by Young measure -- 2.3.20 Div-curl lemma and Tartar's commutation relation -- 2.3.21 Existence of weak entropy-entropy flux pairs -- 2.3.22 Localization of supp ν -- 2.3.23 Approximative limit is an admissible solution -- 2.3.24 Global existence for general systems in one dimension -- 2.4 Final comments -- 2.4.1 Local existence results -- 2.4.2 Global smooth solutions. | |
880 | 8 | |6 505-00/(S |a 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](Ω)* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results -- 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation -- 2.1.2 One-dimensional Euler equations -- 2.1.3 Lagrangian mass coordinates -- 2.1.4 Symmetrizable systems -- 2.1.5 Matrix form of the p-system -- 2.1.6 The Euler equations of an inviscid gas -- 2.2 Existence of smooth solutions -- 2.2.1 Hyperbolic systems and characteristics -- 2.2.2 Cauchy problem for system of conservation laws -- 2.2.3 Linear scalar equation -- 2.2.4 Solution of a linear system -- 2.2.5 Nonlinear scalar equation -- 2.2.6 Piston problem -- 2.2.7 Complementary Riemann invariants -- 2.2.8 Solution of the piston problem -- 2.2.9 Cauchy problem for a symmetric hyperbolic system -- 2.2.10 Approximations -- 2.2.11 Existence of approximations -- 2.2.12 Energy estimate -- 2.2.13 Convergence of approximations to a generalized solution -- 2.2.14 Regularity of the generalized solution. | |
938 | |a YBP Library Services |b YANK |n 2952311 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 84522 | ||
938 | |a EBSCOhost |b EBSC |n 264886 | ||
938 | |a ebrary |b EBRY |n ebr10266459 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL422482 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL7033486 | ||
938 | |a YBP Library Services |b YANK |n 20450393 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn314216971 |
---|---|
_version_ | 1816881688407441409 |
adam_text | |
any_adam_object | |
author | Novotný, A. |
author2 | Straéskraba, I. (Ivan) |
author2_role | |
author2_variant | i s is |
author_GND | http://id.loc.gov/authorities/names/nb2004302471 |
author_facet | Novotný, A. Straéskraba, I. (Ivan) |
author_role | |
author_sort | Novotný, A. |
author_variant | a n an |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA911 |
callnumber-raw | QA911 .N69 2004eb |
callnumber-search | QA911 .N69 2004eb |
callnumber-sort | QA 3911 N69 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces. 1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy. 1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models. 1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results. 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation. |
ctrlnum | (OCoLC)314216971 |
dewey-full | 620.1/064/015118 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/064/015118 |
dewey-search | 620.1/064/015118 |
dewey-sort | 3620.1 264 515118 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11307cam a2200805Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn314216971</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr zn|||||||||</controlfield><controlfield tag="008">040802s2004 enk ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2004301771</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CN8ML</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CN8ML</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JG0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">ICG</subfield><subfield code="d">K6U</subfield><subfield code="d">ZCU</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">AU@</subfield><subfield code="d">LHU</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">YOU</subfield><subfield code="d">S9I</subfield><subfield code="d">TKN</subfield><subfield code="d">BRX</subfield><subfield code="d">W2U</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CNTRU</subfield><subfield code="d">MT4IT</subfield><subfield code="d">UX1</subfield><subfield code="d">UWK</subfield><subfield code="d">ADU</subfield><subfield code="d">SFB</subfield><subfield code="d">ESU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">CN6UV</subfield><subfield code="d">DGN</subfield><subfield code="d">AJS</subfield><subfield code="d">DKU</subfield><subfield code="d">SDF</subfield><subfield code="d">HS0</subfield><subfield code="d">CNNOR</subfield><subfield code="d">CNKUC</subfield><subfield code="d">TUHNV</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA4Y1057</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA4-Y1057</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">316719735</subfield><subfield code="a">455959151</subfield><subfield code="a">476257427</subfield><subfield code="a">646784817</subfield><subfield code="a">756878939</subfield><subfield code="a">1030820230</subfield><subfield code="a">1030844577</subfield><subfield code="a">1033543635</subfield><subfield code="a">1044945920</subfield><subfield code="a">1100564480</subfield><subfield code="a">1119044239</subfield><subfield code="a">1162014861</subfield><subfield code="a">1241804617</subfield><subfield code="a">1243581755</subfield><subfield code="a">1257368755</subfield><subfield code="a">1290109274</subfield><subfield code="a">1300470820</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191523953</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">019152395X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198530846</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280845228</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280845222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314216971</subfield><subfield code="z">(OCoLC)316719735</subfield><subfield code="z">(OCoLC)455959151</subfield><subfield code="z">(OCoLC)476257427</subfield><subfield code="z">(OCoLC)646784817</subfield><subfield code="z">(OCoLC)756878939</subfield><subfield code="z">(OCoLC)1030820230</subfield><subfield code="z">(OCoLC)1030844577</subfield><subfield code="z">(OCoLC)1033543635</subfield><subfield code="z">(OCoLC)1044945920</subfield><subfield code="z">(OCoLC)1100564480</subfield><subfield code="z">(OCoLC)1119044239</subfield><subfield code="z">(OCoLC)1162014861</subfield><subfield code="z">(OCoLC)1241804617</subfield><subfield code="z">(OCoLC)1243581755</subfield><subfield code="z">(OCoLC)1257368755</subfield><subfield code="z">(OCoLC)1290109274</subfield><subfield code="z">(OCoLC)1300470820</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA911</subfield><subfield code="b">.N69 2004eb</subfield></datafield><datafield tag="055" ind1="1" ind2="3"><subfield code="a">QA911</subfield><subfield code="b">.N69 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">021000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.1/064/015118</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Novotný, A.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2004302471</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to the mathematical theory of compressible flow /</subfield><subfield code="c">A. Novotný, I. Straéskraba.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 506 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford lecture series in mathematics and its applications ;</subfield><subfield code="v">27</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Compressibility.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029439</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique des fluides</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Compressibilité.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">compressibility.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">compression.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Material Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compressibility</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluid dynamics</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Straéskraba, I.</subfield><subfield code="q">(Ivan)</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Introduction to the mathematical theory of compressible flow (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGpWDYQxTGCb9WHv8Y4jG3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Novotný, A.</subfield><subfield code="t">Introduction to the mathematical theory of compressible flow.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2004</subfield><subfield code="w">(DLC) 2004301771</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford lecture series in mathematics and its applications ;</subfield><subfield code="v">27.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94044383</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=264886</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">2.2.15 Quasilinear system -- 2.2.16 Local existence for a quasilinear system -- 2.2.17 Second grade approximations -- 2.2.18 Higher order energy estimates -- 2.2.19 Convergence of approximations -- 2.2.20 Uniqueness -- 2.2.21 Local existence for equations of an isentropic ideal gas -- 2.2.22 Existence of global smooth solutions for nonlinear hyperbolic systems -- 2.2.23 2 × 2 system of conservation laws, Riemann invariants -- 2.2.24 Plane wave solutions -- 2.2.25 Plane waves for the Euler system in 2D -- 2.3 Weak solutions -- 2.3.1 Blow up of classical solutions -- 2.3.2 Generalized formulation for systems of conservation laws -- 2.3.3 Piecewise smooth solutions -- 2.3.4 Entropy condition -- 2.3.5 Physical entropy -- 2.3.6 General parabolic approximation and the entropy condition -- 2.3.7 Entropy for a general scalar conservation law -- 2.3.8 Entropy for a 2 × 2 system of conservation laws in 1D -- 2.3.9 Entropy function for a p-system -- 2.3.10 Riemann problem -- 2.3.11 Riemann problem for 2 × 2 isentropic gas dynamics equations -- 2.3.12 Existence and uniqueness of admissible weak solution for a scalar conservation law -- 2.3.13 Plane waves admitting discontinuities -- 2.3.14 Existence of solutions to the 2 × 2 Euler system for an isentropic gas -- 2.3.15 Lax-Friedrichs difference approximations -- 2.3.16 Existence of approximations -- 2.3.17 Invariant regions for Riemann invariants -- 2.3.18 Compactness argument -- 2.3.19 Characterization of the weak limit by Young measure -- 2.3.20 Div-curl lemma and Tartar's commutation relation -- 2.3.21 Existence of weak entropy-entropy flux pairs -- 2.3.22 Localization of supp ν -- 2.3.23 Approximative limit is an admissible solution -- 2.3.24 Global existence for general systems in one dimension -- 2.4 Final comments -- 2.4.1 Local existence results -- 2.4.2 Global smooth solutions.</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](Ω)* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results -- 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation -- 2.1.2 One-dimensional Euler equations -- 2.1.3 Lagrangian mass coordinates -- 2.1.4 Symmetrizable systems -- 2.1.5 Matrix form of the p-system -- 2.1.6 The Euler equations of an inviscid gas -- 2.2 Existence of smooth solutions -- 2.2.1 Hyperbolic systems and characteristics -- 2.2.2 Cauchy problem for system of conservation laws -- 2.2.3 Linear scalar equation -- 2.2.4 Solution of a linear system -- 2.2.5 Nonlinear scalar equation -- 2.2.6 Piston problem -- 2.2.7 Complementary Riemann invariants -- 2.2.8 Solution of the piston problem -- 2.2.9 Cauchy problem for a symmetric hyperbolic system -- 2.2.10 Approximations -- 2.2.11 Existence of approximations -- 2.2.12 Energy estimate -- 2.2.13 Convergence of approximations to a generalized solution -- 2.2.14 Regularity of the generalized solution.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2952311</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">84522</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">264886</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10266459</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL422482</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL7033486</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20450393</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn314216971 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780191523953 019152395X 1280845228 9781280845222 |
language | English |
oclc_num | 314216971 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 506 pages) |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford lecture series in mathematics and its applications ; |
series2 | Oxford lecture series in mathematics and its applications ; |
spelling | Novotný, A. http://id.loc.gov/authorities/names/nb2004302471 Introduction to the mathematical theory of compressible flow / A. Novotný, I. Straéskraba. Oxford ; New York : Oxford University Press, 2004. 1 online resource (xx, 506 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Oxford lecture series in mathematics and its applications ; 27 Includes bibliographical references and index. Print version record. This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to. 1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces. 1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy. 1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models. 1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results. 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation. English. Fluid dynamics Mathematical models. Compressibility. http://id.loc.gov/authorities/subjects/sh85029439 Dynamique des fluides Modèles mathématiques. Compressibilité. compressibility. aat compression. aat TECHNOLOGY & ENGINEERING Material Science. bisacsh Compressibility fast Fluid dynamics Mathematical models fast Straéskraba, I. (Ivan) has work: Introduction to the mathematical theory of compressible flow (Text) https://id.oclc.org/worldcat/entity/E39PCGpWDYQxTGCb9WHv8Y4jG3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Novotný, A. Introduction to the mathematical theory of compressible flow. Oxford ; New York : Oxford University Press, 2004 (DLC) 2004301771 Oxford lecture series in mathematics and its applications ; 27. http://id.loc.gov/authorities/names/n94044383 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=264886 Volltext 505-00/(S 2.2.15 Quasilinear system -- 2.2.16 Local existence for a quasilinear system -- 2.2.17 Second grade approximations -- 2.2.18 Higher order energy estimates -- 2.2.19 Convergence of approximations -- 2.2.20 Uniqueness -- 2.2.21 Local existence for equations of an isentropic ideal gas -- 2.2.22 Existence of global smooth solutions for nonlinear hyperbolic systems -- 2.2.23 2 × 2 system of conservation laws, Riemann invariants -- 2.2.24 Plane wave solutions -- 2.2.25 Plane waves for the Euler system in 2D -- 2.3 Weak solutions -- 2.3.1 Blow up of classical solutions -- 2.3.2 Generalized formulation for systems of conservation laws -- 2.3.3 Piecewise smooth solutions -- 2.3.4 Entropy condition -- 2.3.5 Physical entropy -- 2.3.6 General parabolic approximation and the entropy condition -- 2.3.7 Entropy for a general scalar conservation law -- 2.3.8 Entropy for a 2 × 2 system of conservation laws in 1D -- 2.3.9 Entropy function for a p-system -- 2.3.10 Riemann problem -- 2.3.11 Riemann problem for 2 × 2 isentropic gas dynamics equations -- 2.3.12 Existence and uniqueness of admissible weak solution for a scalar conservation law -- 2.3.13 Plane waves admitting discontinuities -- 2.3.14 Existence of solutions to the 2 × 2 Euler system for an isentropic gas -- 2.3.15 Lax-Friedrichs difference approximations -- 2.3.16 Existence of approximations -- 2.3.17 Invariant regions for Riemann invariants -- 2.3.18 Compactness argument -- 2.3.19 Characterization of the weak limit by Young measure -- 2.3.20 Div-curl lemma and Tartar's commutation relation -- 2.3.21 Existence of weak entropy-entropy flux pairs -- 2.3.22 Localization of supp ν -- 2.3.23 Approximative limit is an admissible solution -- 2.3.24 Global existence for general systems in one dimension -- 2.4 Final comments -- 2.4.1 Local existence results -- 2.4.2 Global smooth solutions. 505-00/(S 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](Ω)* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results -- 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation -- 2.1.2 One-dimensional Euler equations -- 2.1.3 Lagrangian mass coordinates -- 2.1.4 Symmetrizable systems -- 2.1.5 Matrix form of the p-system -- 2.1.6 The Euler equations of an inviscid gas -- 2.2 Existence of smooth solutions -- 2.2.1 Hyperbolic systems and characteristics -- 2.2.2 Cauchy problem for system of conservation laws -- 2.2.3 Linear scalar equation -- 2.2.4 Solution of a linear system -- 2.2.5 Nonlinear scalar equation -- 2.2.6 Piston problem -- 2.2.7 Complementary Riemann invariants -- 2.2.8 Solution of the piston problem -- 2.2.9 Cauchy problem for a symmetric hyperbolic system -- 2.2.10 Approximations -- 2.2.11 Existence of approximations -- 2.2.12 Energy estimate -- 2.2.13 Convergence of approximations to a generalized solution -- 2.2.14 Regularity of the generalized solution. |
spellingShingle | Novotný, A. Introduction to the mathematical theory of compressible flow / Oxford lecture series in mathematics and its applications ; 1 Fundamental concepts and equations -- 1.1 Some mathematical concepts and notation -- 1.1.1 Basic notation -- 1.1.2 Some useful inequalities in IR[sup(N)] -- 1.1.3 Differential operators -- 1.1.4 Gronwall's lemma -- 1.1.5 Implicit functions -- 1.1.6 Transformations of Cartesian coordinates -- 1.1.7 Hölder-continuous and Lipschitz functions -- 1.1.8 The symbols "o" and "O" -- 1.1.9 Partitions of unity -- 1.1.10 Measure -- 1.1.11 Description of the boundary -- 1.1.12 Measure on the boundary of a domain -- 1.1.13 Classical Green's theorem -- 1.1.14 Lebesgue spaces. 1.1.15 Lebesgue's points -- 1.1.16 Absolutely continuous functions -- 1.1.17 Absolute continuity of integrals with respect to measurable subsets -- 1.1.18 Some theorems from integration theory -- 1.2 Governing equations and relations of gas dynamics -- 1.2.1 Description of the flow -- 1.2.2 The transport theorem -- 1.2.3 The continuity equation -- 1.2.4 The equations of motion -- 1.2.5 The law of conservation of the moment of momentum. Symmetry of the stress tensor -- 1.2.6 Inviscid and viscous fluids -- 1.2.7 The energy equation -- 1.2.8 The second law of thermodynamics and the entropy. 1.2.9 Principle of material frame indifference -- 1.2.10 Newtonian fluids -- 1.2.11 Conservative and dissipation form of the energy equation for Newtonian fluids -- 1.2.12 Entropy form of the energy equation for Newtonian fluids -- 1.2.13 Some consequences of the Clausius-Duhem inequality -- 1.2.14 Equations of state -- 1.2.15 Adiabatic flow of a perfect inviscid gas -- 1.2.16 Compressible Euler equations -- 1.2.17 Compressible Navier-Stokes equations for a perfect viscous gas -- 1.2.18 Barotropic flow of a viscous gas -- 1.2.19 Speed of sound -- 1.2.20 Simplified models. 1.2.21 Initial and boundary conditions -- 1.3 Some advanced mathematical concepts and results -- 1.3.1 Spaces of Hölder-continuous and continuously diffrentiable functions -- 1.3.2 Young's functions, Jensen's inequality -- 1.3.3 Orlicz spaces -- 1.3.4 Distributions -- 1.3.5 Sobolev spaces -- 1.3.6 Homogeneous Sobolev spaces -- 1.3.7 Tempered distributions -- 1.3.8 Radon measure and representation of C[sub(B)](])* -- 1.3.9 Functions of bounded variation -- 1.3.10 Functions with values in Banach spaces -- 1.3.11 Sobolev imbeddings of abstract spaces -- 1.3.12 Some compactness results. 1.4 Survey of concepts and results from functional analysis -- 1.4.1 Linear vector spaces -- 1.4.2 Topological linear spaces -- 1.4.3 Metric linear space -- 1.4.4 Normed linear space -- 1.4.5 Duals to Banach spaces and weak( -*) topologies -- 1.4.6 Riesz representation theorem -- 1.4.7 Operators -- 1.4.8 Elements of spectral theory -- 1.4.9 Lax-Milgram lemma -- 1.4.10 Imbeddings -- 1.4.11 Solution of nonlinear operator equations -- 2 Theoretical results for the Euler equations -- 2.1 Hyperbolic systems and the Euler equations -- 2.1.1 Zero-viscosity Burgers equation. Fluid dynamics Mathematical models. Compressibility. http://id.loc.gov/authorities/subjects/sh85029439 Dynamique des fluides Modèles mathématiques. Compressibilité. compressibility. aat compression. aat TECHNOLOGY & ENGINEERING Material Science. bisacsh Compressibility fast Fluid dynamics Mathematical models fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029439 |
title | Introduction to the mathematical theory of compressible flow / |
title_auth | Introduction to the mathematical theory of compressible flow / |
title_exact_search | Introduction to the mathematical theory of compressible flow / |
title_full | Introduction to the mathematical theory of compressible flow / A. Novotný, I. Straéskraba. |
title_fullStr | Introduction to the mathematical theory of compressible flow / A. Novotný, I. Straéskraba. |
title_full_unstemmed | Introduction to the mathematical theory of compressible flow / A. Novotný, I. Straéskraba. |
title_short | Introduction to the mathematical theory of compressible flow / |
title_sort | introduction to the mathematical theory of compressible flow |
topic | Fluid dynamics Mathematical models. Compressibility. http://id.loc.gov/authorities/subjects/sh85029439 Dynamique des fluides Modèles mathématiques. Compressibilité. compressibility. aat compression. aat TECHNOLOGY & ENGINEERING Material Science. bisacsh Compressibility fast Fluid dynamics Mathematical models fast |
topic_facet | Fluid dynamics Mathematical models. Compressibility. Dynamique des fluides Modèles mathématiques. Compressibilité. compressibility. compression. TECHNOLOGY & ENGINEERING Material Science. Compressibility Fluid dynamics Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=264886 |
work_keys_str_mv | AT novotnya introductiontothemathematicaltheoryofcompressibleflow AT straeskrabai introductiontothemathematicaltheoryofcompressibleflow |