Modular forms on schiermonnikoog /:
Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspirati...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry. |
Beschreibung: | 1 online resource (x, 350 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9780511457548 0511457545 0511456239 9780511456237 0521493544 9780521493543 0511454503 9780511454509 9780511543371 0511543379 1107189322 9781107189324 1281944866 9781281944863 9786611944865 6611944869 0511453523 9780511453526 0511455534 9780511455537 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn311622710 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090302s2008 enka ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d CDX |d OSU |d IDEBK |d E7B |d OCLCQ |d YDXCP |d OCLCQ |d REDDC |d OCLCQ |d OCLCF |d HUH |d OCL |d OCLCQ |d UAB |d STF |d OCLCQ |d OL$ |d SFB |d LUN |d AUD |d UKAHL |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 302061898 |a 316432404 |a 646780846 |a 663421795 |a 1035711972 |a 1170236827 |a 1171484224 |a 1259219945 | ||
020 | |a 9780511457548 |q (electronic bk.) | ||
020 | |a 0511457545 |q (electronic bk.) | ||
020 | |a 0511456239 |q (electronic bk.) | ||
020 | |a 9780511456237 |q (electronic bk.) | ||
020 | |a 0521493544 |q (hbk.) | ||
020 | |a 9780521493543 |q (hbk.) | ||
020 | |a 0511454503 |q (ebook) | ||
020 | |a 9780511454509 |q (ebook) | ||
020 | |a 9780511543371 |q (ebook) | ||
020 | |a 0511543379 | ||
020 | |a 1107189322 | ||
020 | |a 9781107189324 | ||
020 | |a 1281944866 | ||
020 | |a 9781281944863 | ||
020 | |a 9786611944865 | ||
020 | |a 6611944869 | ||
020 | |a 0511453523 | ||
020 | |a 9780511453526 | ||
020 | |a 0511455534 | ||
020 | |a 9780511455537 | ||
024 | 8 | |a 9786611944865 | |
035 | |a (OCoLC)311622710 |z (OCoLC)302061898 |z (OCoLC)316432404 |z (OCoLC)646780846 |z (OCoLC)663421795 |z (OCoLC)1035711972 |z (OCoLC)1170236827 |z (OCoLC)1171484224 |z (OCoLC)1259219945 | ||
050 | 4 | |a QA243 |b .M696 2008eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.73 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Modular forms on schiermonnikoog / |c edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen. |
260 | |a Cambridge : |b Cambridge University Press, |c 2008. | ||
300 | |a 1 online resource (x, 350 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry. | ||
505 | 0 | |a Cover; Half-title; Title; Copyright; Contents; Preface; Contributors; Chapter 1 Modular Forms; Chapter 2 On the basis problem for Siegel modular forms with level; Chapter 3 Mock theta functions, weak Maass forms, and applications; Chapter 4 Sign changes of coefficients of half integral weight modular forms; Chapter 5 Gauss map on the theta divisor and Green's functions; Chapter 6 A control theorem for the images of Galois actions on certain infinite families of modular forms; Chapter 7 Galois realizations of families of Projective Linear Groups via cusp forms | |
505 | 8 | |a Chapter 8 A strong symmetry property of Eisenstein seriesChapter 9 A conjecture on a Shimura type correspondence for Siegel modular forms, and Harder's conjecture on congruences; Chapter 10 Petersson's trace formula and the Hecke eigenvalues of Hilbert modular forms; Chapter 11 Modular shadows and the Lévy-Mellin ...-adic transform; Chapter 12 Jacobi forms of critical weight and Weil representations; Chapter 13 Tannakian Categories attached to abelian varieties; Chapter 14 Torelli's theorem from the topological point of view | |
505 | 8 | |a Chapter 15 Existence of Whittaker models related to four dimensional symplectic Galois representationsChapter 16 Multiplying Modular Forms; Chapter 17 On projective linear groups over finite fields as Galois groups over the rational numbers | |
546 | |a English. | ||
650 | 0 | |a Forms, Modular |v Congresses. | |
650 | 6 | |a Formes modulaires |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Forms, Modular |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Edixhoven, B. |q (Bas), |d 1962- |0 http://id.loc.gov/authorities/names/n93102103 | |
700 | 1 | |a Geer, Gerard van der. | |
700 | 1 | |a Moonen, Ben. | |
776 | 0 | 8 | |i Print version: |t Modular forms on schiermonnikoog. |d Cambridge : Cambridge University Press, 2008 |z 0521493544 |z 9780521493543 |w (OCoLC)237883376 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259198 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 9530296 | ||
938 | |a EBSCOhost |b EBSC |n 259198 | ||
938 | |a YBP Library Services |b YANK |n 2953273 | ||
938 | |a YBP Library Services |b YANK |n 2977732 | ||
938 | |a YBP Library Services |b YANK |n 3275914 | ||
938 | |a YBP Library Services |b YANK |n 2914412 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH13422915 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn311622710 |
---|---|
_version_ | 1816881687838064640 |
adam_text | |
any_adam_object | |
author2 | Edixhoven, B. (Bas), 1962- Geer, Gerard van der Moonen, Ben |
author2_role | |
author2_variant | b e be g v d g gvd gvdg b m bm |
author_GND | http://id.loc.gov/authorities/names/n93102103 |
author_facet | Edixhoven, B. (Bas), 1962- Geer, Gerard van der Moonen, Ben |
author_sort | Edixhoven, B. 1962- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA243 |
callnumber-raw | QA243 .M696 2008eb |
callnumber-search | QA243 .M696 2008eb |
callnumber-sort | QA 3243 M696 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Title; Copyright; Contents; Preface; Contributors; Chapter 1 Modular Forms; Chapter 2 On the basis problem for Siegel modular forms with level; Chapter 3 Mock theta functions, weak Maass forms, and applications; Chapter 4 Sign changes of coefficients of half integral weight modular forms; Chapter 5 Gauss map on the theta divisor and Green's functions; Chapter 6 A control theorem for the images of Galois actions on certain infinite families of modular forms; Chapter 7 Galois realizations of families of Projective Linear Groups via cusp forms Chapter 8 A strong symmetry property of Eisenstein seriesChapter 9 A conjecture on a Shimura type correspondence for Siegel modular forms, and Harder's conjecture on congruences; Chapter 10 Petersson's trace formula and the Hecke eigenvalues of Hilbert modular forms; Chapter 11 Modular shadows and the Lévy-Mellin ...-adic transform; Chapter 12 Jacobi forms of critical weight and Weil representations; Chapter 13 Tannakian Categories attached to abelian varieties; Chapter 14 Torelli's theorem from the topological point of view Chapter 15 Existence of Whittaker models related to four dimensional symplectic Galois representationsChapter 16 Multiplying Modular Forms; Chapter 17 On projective linear groups over finite fields as Galois groups over the rational numbers |
ctrlnum | (OCoLC)311622710 |
dewey-full | 512.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.73 |
dewey-search | 512.73 |
dewey-sort | 3512.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05384cam a2200817 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn311622710</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090302s2008 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">OSU</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">HUH</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">SFB</subfield><subfield code="d">LUN</subfield><subfield code="d">AUD</subfield><subfield code="d">UKAHL</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">302061898</subfield><subfield code="a">316432404</subfield><subfield code="a">646780846</subfield><subfield code="a">663421795</subfield><subfield code="a">1035711972</subfield><subfield code="a">1170236827</subfield><subfield code="a">1171484224</subfield><subfield code="a">1259219945</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511457548</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511457545</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511456239</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511456237</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521493544</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521493543</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511454503</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511454509</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543371</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511543379</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107189322</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107189324</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281944866</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281944863</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611944865</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611944869</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511453523</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511453526</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511455534</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511455537</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786611944865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)311622710</subfield><subfield code="z">(OCoLC)302061898</subfield><subfield code="z">(OCoLC)316432404</subfield><subfield code="z">(OCoLC)646780846</subfield><subfield code="z">(OCoLC)663421795</subfield><subfield code="z">(OCoLC)1035711972</subfield><subfield code="z">(OCoLC)1170236827</subfield><subfield code="z">(OCoLC)1171484224</subfield><subfield code="z">(OCoLC)1259219945</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA243</subfield><subfield code="b">.M696 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Modular forms on schiermonnikoog /</subfield><subfield code="c">edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 350 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Title; Copyright; Contents; Preface; Contributors; Chapter 1 Modular Forms; Chapter 2 On the basis problem for Siegel modular forms with level; Chapter 3 Mock theta functions, weak Maass forms, and applications; Chapter 4 Sign changes of coefficients of half integral weight modular forms; Chapter 5 Gauss map on the theta divisor and Green's functions; Chapter 6 A control theorem for the images of Galois actions on certain infinite families of modular forms; Chapter 7 Galois realizations of families of Projective Linear Groups via cusp forms</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 8 A strong symmetry property of Eisenstein seriesChapter 9 A conjecture on a Shimura type correspondence for Siegel modular forms, and Harder's conjecture on congruences; Chapter 10 Petersson's trace formula and the Hecke eigenvalues of Hilbert modular forms; Chapter 11 Modular shadows and the Lévy-Mellin ...-adic transform; Chapter 12 Jacobi forms of critical weight and Weil representations; Chapter 13 Tannakian Categories attached to abelian varieties; Chapter 14 Torelli's theorem from the topological point of view</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 15 Existence of Whittaker models related to four dimensional symplectic Galois representationsChapter 16 Multiplying Modular Forms; Chapter 17 On projective linear groups over finite fields as Galois groups over the rational numbers</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forms, Modular</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Formes modulaires</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forms, Modular</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edixhoven, B.</subfield><subfield code="q">(Bas),</subfield><subfield code="d">1962-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93102103</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geer, Gerard van der.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moonen, Ben.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Modular forms on schiermonnikoog.</subfield><subfield code="d">Cambridge : Cambridge University Press, 2008</subfield><subfield code="z">0521493544</subfield><subfield code="z">9780521493543</subfield><subfield code="w">(OCoLC)237883376</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259198</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">9530296</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">259198</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2953273</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2977732</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3275914</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2914412</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13422915</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. Conference papers and proceedings fast |
genre_facet | Electronic books. Conference papers and proceedings |
id | ZDB-4-EBA-ocn311622710 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:41Z |
institution | BVB |
isbn | 9780511457548 0511457545 0511456239 9780511456237 0521493544 9780521493543 0511454503 9780511454509 9780511543371 0511543379 1107189322 9781107189324 1281944866 9781281944863 9786611944865 6611944869 0511453523 9780511453526 0511455534 9780511455537 |
language | English |
oclc_num | 311622710 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 350 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Modular forms on schiermonnikoog / edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen. Cambridge : Cambridge University Press, 2008. 1 online resource (x, 350 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references. Print version record. Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry. Cover; Half-title; Title; Copyright; Contents; Preface; Contributors; Chapter 1 Modular Forms; Chapter 2 On the basis problem for Siegel modular forms with level; Chapter 3 Mock theta functions, weak Maass forms, and applications; Chapter 4 Sign changes of coefficients of half integral weight modular forms; Chapter 5 Gauss map on the theta divisor and Green's functions; Chapter 6 A control theorem for the images of Galois actions on certain infinite families of modular forms; Chapter 7 Galois realizations of families of Projective Linear Groups via cusp forms Chapter 8 A strong symmetry property of Eisenstein seriesChapter 9 A conjecture on a Shimura type correspondence for Siegel modular forms, and Harder's conjecture on congruences; Chapter 10 Petersson's trace formula and the Hecke eigenvalues of Hilbert modular forms; Chapter 11 Modular shadows and the Lévy-Mellin ...-adic transform; Chapter 12 Jacobi forms of critical weight and Weil representations; Chapter 13 Tannakian Categories attached to abelian varieties; Chapter 14 Torelli's theorem from the topological point of view Chapter 15 Existence of Whittaker models related to four dimensional symplectic Galois representationsChapter 16 Multiplying Modular Forms; Chapter 17 On projective linear groups over finite fields as Galois groups over the rational numbers English. Forms, Modular Congresses. Formes modulaires Congrès. MATHEMATICS Number Theory. bisacsh Forms, Modular fast Electronic books. Conference papers and proceedings fast Edixhoven, B. (Bas), 1962- http://id.loc.gov/authorities/names/n93102103 Geer, Gerard van der. Moonen, Ben. Print version: Modular forms on schiermonnikoog. Cambridge : Cambridge University Press, 2008 0521493544 9780521493543 (OCoLC)237883376 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259198 Volltext |
spellingShingle | Modular forms on schiermonnikoog / Cover; Half-title; Title; Copyright; Contents; Preface; Contributors; Chapter 1 Modular Forms; Chapter 2 On the basis problem for Siegel modular forms with level; Chapter 3 Mock theta functions, weak Maass forms, and applications; Chapter 4 Sign changes of coefficients of half integral weight modular forms; Chapter 5 Gauss map on the theta divisor and Green's functions; Chapter 6 A control theorem for the images of Galois actions on certain infinite families of modular forms; Chapter 7 Galois realizations of families of Projective Linear Groups via cusp forms Chapter 8 A strong symmetry property of Eisenstein seriesChapter 9 A conjecture on a Shimura type correspondence for Siegel modular forms, and Harder's conjecture on congruences; Chapter 10 Petersson's trace formula and the Hecke eigenvalues of Hilbert modular forms; Chapter 11 Modular shadows and the Lévy-Mellin ...-adic transform; Chapter 12 Jacobi forms of critical weight and Weil representations; Chapter 13 Tannakian Categories attached to abelian varieties; Chapter 14 Torelli's theorem from the topological point of view Chapter 15 Existence of Whittaker models related to four dimensional symplectic Galois representationsChapter 16 Multiplying Modular Forms; Chapter 17 On projective linear groups over finite fields as Galois groups over the rational numbers Forms, Modular Congresses. Formes modulaires Congrès. MATHEMATICS Number Theory. bisacsh Forms, Modular fast |
title | Modular forms on schiermonnikoog / |
title_auth | Modular forms on schiermonnikoog / |
title_exact_search | Modular forms on schiermonnikoog / |
title_full | Modular forms on schiermonnikoog / edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen. |
title_fullStr | Modular forms on schiermonnikoog / edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen. |
title_full_unstemmed | Modular forms on schiermonnikoog / edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen. |
title_short | Modular forms on schiermonnikoog / |
title_sort | modular forms on schiermonnikoog |
topic | Forms, Modular Congresses. Formes modulaires Congrès. MATHEMATICS Number Theory. bisacsh Forms, Modular fast |
topic_facet | Forms, Modular Congresses. Formes modulaires Congrès. MATHEMATICS Number Theory. Forms, Modular Electronic books. Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259198 |
work_keys_str_mv | AT edixhovenb modularformsonschiermonnikoog AT geergerardvander modularformsonschiermonnikoog AT moonenben modularformsonschiermonnikoog |