Least squares support vector machines /:
Annotation.
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
2002.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation. |
Beschreibung: | 1 online resource (xiv, 294 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812776656 9789812776655 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn305127050 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 020813s2002 njua ob 001 0 eng d | ||
010 | |z 2002033063 | ||
040 | |a CaPaEBR |b eng |e pn |c COCUF |d OCLCQ |d N$T |d YDXCP |d OCLCQ |d MERUC |d CCO |d E7B |d OCLCQ |d OCLCF |d AU@ |d IDEBK |d OCLCQ |d AZK |d AGLDB |d OCLCQ |d COCUF |d OCLCQ |d MOR |d PIFAG |d OCLCQ |d STF |d WRM |d VTS |d NRAMU |d VT2 |d OCLCQ |d M8D |d UKAHL |d OCLCO |d OCLCQ |d UKCRE |d OCLCO |d OCLCL |d INARC |d OCLCQ | ||
019 | |a 181654895 |a 560446647 |a 647683458 |a 842666106 |a 961557317 |a 962617482 |a 988523809 |a 991988531 |a 1037756956 |a 1038640844 |a 1045443149 |a 1055383731 |a 1081227829 |a 1153028500 |a 1430401859 | ||
020 | |a 9812776656 |q (electronic bk.) | ||
020 | |a 9789812776655 |q (electronic bk.) | ||
020 | |z 9789812381514 | ||
020 | |z 9789812776655 | ||
020 | |z 9812381511 | ||
035 | |a (OCoLC)305127050 |z (OCoLC)181654895 |z (OCoLC)560446647 |z (OCoLC)647683458 |z (OCoLC)842666106 |z (OCoLC)961557317 |z (OCoLC)962617482 |z (OCoLC)988523809 |z (OCoLC)991988531 |z (OCoLC)1037756956 |z (OCoLC)1038640844 |z (OCoLC)1045443149 |z (OCoLC)1055383731 |z (OCoLC)1081227829 |z (OCoLC)1153028500 |z (OCoLC)1430401859 | ||
037 | |b 00041155 | ||
050 | 4 | |a Q325.5 |b .L45 2002eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 21 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Least squares support vector machines / |c Johan A.K. Suykens [and others]. |
260 | |a River Edge, NJ : |b World Scientific, |c 2002. | ||
300 | |a 1 online resource (xiv, 294 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a Annotation. |b This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples. | |
505 | 0 | 0 | |g Ch. 1. |t Introduction -- |g Ch. 2. |t Support Vector Machines -- |g Ch. 3. |t Basic Methods of Least Squares Support Vector Machines -- |g Ch. 4. |t Bayesian Inference for LS-SVM Models -- |g Ch. 5. |t Robustness -- |g Ch. 6. |t Large Scale Problems -- |g Ch. 7. |t LS-SVM for Unsupervised Learning -- |g Ch. 8. |t LS-SVM for Recurrent Networks and Control. |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Algorithms. |0 http://id.loc.gov/authorities/subjects/sh85003487 | |
650 | 0 | |a Kernel functions. |0 http://id.loc.gov/authorities/subjects/sh85072061 | |
650 | 0 | |a Least squares. |0 http://id.loc.gov/authorities/subjects/sh85075570 | |
650 | 2 | |a Algorithms |0 https://id.nlm.nih.gov/mesh/D000465 | |
650 | 2 | |a Least-Squares Analysis |0 https://id.nlm.nih.gov/mesh/D016018 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Algorithmes. | |
650 | 6 | |a Noyaux (Mathématiques) | |
650 | 6 | |a Moindres carrés. | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Kernel functions |2 fast | |
650 | 7 | |a Least squares |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
700 | 1 | |a Suykens, Johan A. K. |0 http://id.loc.gov/authorities/names/n95114980 | |
776 | 0 | 8 | |i Print version: |t Least squares support vector machines. |d River Edge, NJ : World Scientific, 2002 |w (DLC) 2002033063 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210682 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684664 | ||
938 | |a EBSCOhost |b EBSC |n 210682 | ||
938 | |a YBP Library Services |b YANK |n 2736137 | ||
938 | |a Internet Archive |b INAR |n leastsquaressupp0000unse | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn305127050 |
---|---|
_version_ | 1816881686337552384 |
adam_text | |
any_adam_object | |
author2 | Suykens, Johan A. K. |
author2_role | |
author2_variant | j a k s jak jaks |
author_GND | http://id.loc.gov/authorities/names/n95114980 |
author_facet | Suykens, Johan A. K. |
author_sort | Suykens, Johan A. K. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .L45 2002eb |
callnumber-search | Q325.5 .L45 2002eb |
callnumber-sort | Q 3325.5 L45 42002EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Introduction -- Support Vector Machines -- Basic Methods of Least Squares Support Vector Machines -- Bayesian Inference for LS-SVM Models -- Robustness -- Large Scale Problems -- LS-SVM for Unsupervised Learning -- LS-SVM for Recurrent Networks and Control. |
ctrlnum | (OCoLC)305127050 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04981cam a2200721 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn305127050</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">020813s2002 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2002033063</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AU@</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181654895</subfield><subfield code="a">560446647</subfield><subfield code="a">647683458</subfield><subfield code="a">842666106</subfield><subfield code="a">961557317</subfield><subfield code="a">962617482</subfield><subfield code="a">988523809</subfield><subfield code="a">991988531</subfield><subfield code="a">1037756956</subfield><subfield code="a">1038640844</subfield><subfield code="a">1045443149</subfield><subfield code="a">1055383731</subfield><subfield code="a">1081227829</subfield><subfield code="a">1153028500</subfield><subfield code="a">1430401859</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812776656</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812776655</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812381514</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812776655</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812381511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)305127050</subfield><subfield code="z">(OCoLC)181654895</subfield><subfield code="z">(OCoLC)560446647</subfield><subfield code="z">(OCoLC)647683458</subfield><subfield code="z">(OCoLC)842666106</subfield><subfield code="z">(OCoLC)961557317</subfield><subfield code="z">(OCoLC)962617482</subfield><subfield code="z">(OCoLC)988523809</subfield><subfield code="z">(OCoLC)991988531</subfield><subfield code="z">(OCoLC)1037756956</subfield><subfield code="z">(OCoLC)1038640844</subfield><subfield code="z">(OCoLC)1045443149</subfield><subfield code="z">(OCoLC)1055383731</subfield><subfield code="z">(OCoLC)1081227829</subfield><subfield code="z">(OCoLC)1153028500</subfield><subfield code="z">(OCoLC)1430401859</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">00041155</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.L45 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Least squares support vector machines /</subfield><subfield code="c">Johan A.K. Suykens [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 294 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation.</subfield><subfield code="b">This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Ch. 1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">Ch. 2.</subfield><subfield code="t">Support Vector Machines --</subfield><subfield code="g">Ch. 3.</subfield><subfield code="t">Basic Methods of Least Squares Support Vector Machines --</subfield><subfield code="g">Ch. 4.</subfield><subfield code="t">Bayesian Inference for LS-SVM Models --</subfield><subfield code="g">Ch. 5.</subfield><subfield code="t">Robustness --</subfield><subfield code="g">Ch. 6.</subfield><subfield code="t">Large Scale Problems --</subfield><subfield code="g">Ch. 7.</subfield><subfield code="t">LS-SVM for Unsupervised Learning --</subfield><subfield code="g">Ch. 8.</subfield><subfield code="t">LS-SVM for Recurrent Networks and Control.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003487</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Kernel functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85072061</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Least squares.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85075570</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Algorithms</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000465</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Least-Squares Analysis</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D016018</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Noyaux (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Moindres carrés.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Least squares</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suykens, Johan A. K.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95114980</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Least squares support vector machines.</subfield><subfield code="d">River Edge, NJ : World Scientific, 2002</subfield><subfield code="w">(DLC) 2002033063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210682</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684664</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210682</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736137</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">leastsquaressupp0000unse</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn305127050 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:40Z |
institution | BVB |
isbn | 9812776656 9789812776655 |
language | English |
oclc_num | 305127050 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 294 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
spelling | Least squares support vector machines / Johan A.K. Suykens [and others]. River Edge, NJ : World Scientific, 2002. 1 online resource (xiv, 294 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Annotation. This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing spareness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrom sampling with active selection of support vectors. The methods are illustrated with several examples. Ch. 1. Introduction -- Ch. 2. Support Vector Machines -- Ch. 3. Basic Methods of Least Squares Support Vector Machines -- Ch. 4. Bayesian Inference for LS-SVM Models -- Ch. 5. Robustness -- Ch. 6. Large Scale Problems -- Ch. 7. LS-SVM for Unsupervised Learning -- Ch. 8. LS-SVM for Recurrent Networks and Control. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Least squares. http://id.loc.gov/authorities/subjects/sh85075570 Algorithms https://id.nlm.nih.gov/mesh/D000465 Least-Squares Analysis https://id.nlm.nih.gov/mesh/D016018 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) Moindres carrés. algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Algorithms fast Kernel functions fast Least squares fast Machine learning fast Suykens, Johan A. K. http://id.loc.gov/authorities/names/n95114980 Print version: Least squares support vector machines. River Edge, NJ : World Scientific, 2002 (DLC) 2002033063 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210682 Volltext |
spellingShingle | Least squares support vector machines / Introduction -- Support Vector Machines -- Basic Methods of Least Squares Support Vector Machines -- Bayesian Inference for LS-SVM Models -- Robustness -- Large Scale Problems -- LS-SVM for Unsupervised Learning -- LS-SVM for Recurrent Networks and Control. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Least squares. http://id.loc.gov/authorities/subjects/sh85075570 Algorithms https://id.nlm.nih.gov/mesh/D000465 Least-Squares Analysis https://id.nlm.nih.gov/mesh/D016018 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) Moindres carrés. algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Algorithms fast Kernel functions fast Least squares fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85003487 http://id.loc.gov/authorities/subjects/sh85072061 http://id.loc.gov/authorities/subjects/sh85075570 https://id.nlm.nih.gov/mesh/D000465 https://id.nlm.nih.gov/mesh/D016018 https://id.nlm.nih.gov/mesh/D000069550 |
title | Least squares support vector machines / |
title_alt | Introduction -- Support Vector Machines -- Basic Methods of Least Squares Support Vector Machines -- Bayesian Inference for LS-SVM Models -- Robustness -- Large Scale Problems -- LS-SVM for Unsupervised Learning -- LS-SVM for Recurrent Networks and Control. |
title_auth | Least squares support vector machines / |
title_exact_search | Least squares support vector machines / |
title_full | Least squares support vector machines / Johan A.K. Suykens [and others]. |
title_fullStr | Least squares support vector machines / Johan A.K. Suykens [and others]. |
title_full_unstemmed | Least squares support vector machines / Johan A.K. Suykens [and others]. |
title_short | Least squares support vector machines / |
title_sort | least squares support vector machines |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Least squares. http://id.loc.gov/authorities/subjects/sh85075570 Algorithms https://id.nlm.nih.gov/mesh/D000465 Least-Squares Analysis https://id.nlm.nih.gov/mesh/D016018 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) Moindres carrés. algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Algorithms fast Kernel functions fast Least squares fast Machine learning fast |
topic_facet | Machine learning. Algorithms. Kernel functions. Least squares. Algorithms Least-Squares Analysis Machine Learning Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) Moindres carrés. algorithms. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Kernel functions Least squares Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210682 |
work_keys_str_mv | AT suykensjohanak leastsquaressupportvectormachines |