Structure of Hilbert space operators /:
Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesiv...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
2006.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. |
Beschreibung: | 1 online resource (x, 248 pages) |
Bibliographie: | Includes bibliographical references (pages 241-246) and index. |
ISBN: | 9789812774484 9812774483 1281919519 9781281919519 9786611919511 6611919511 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn299585014 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090123s2006 nju ob 001 0 eng d | ||
010 | |z 2006283691 | ||
040 | |a CaPaEBR |b eng |e pn |c CUY |d OCLCQ |d N$T |d YDXCP |d IDEBK |d E7B |d OCLCQ |d OCLCF |d OCLCQ |d STF |d OCLCQ |d MHW |d EBLCP |d DEBSZ |d AZK |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 182522736 |a 647684506 |a 815750023 |a 879025635 |a 961534997 |a 962606894 |a 1259129911 | ||
020 | |a 9789812774484 |q (electronic bk.) | ||
020 | |a 9812774483 |q (electronic bk.) | ||
020 | |a 1281919519 | ||
020 | |a 9781281919519 | ||
020 | |z 9789812566164 | ||
020 | |z 9812566163 | ||
020 | |a 9786611919511 | ||
020 | |a 6611919511 | ||
035 | |a (OCoLC)299585014 |z (OCoLC)182522736 |z (OCoLC)647684506 |z (OCoLC)815750023 |z (OCoLC)879025635 |z (OCoLC)961534997 |z (OCoLC)962606894 |z (OCoLC)1259129911 | ||
050 | 4 | |a QA322.4 |b .J53 2006eb | |
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
072 | 7 | |a TJFD5 |2 bicssc | |
082 | 7 | |a 515.733 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Jiang, Chunlan. |1 https://id.oclc.org/worldcat/entity/E39PCjwfrKjdrgkWc8qCHJ9bMK |0 http://id.loc.gov/authorities/names/no99057541 | |
245 | 1 | 0 | |a Structure of Hilbert space operators / |c Chunlan Jiang, Zongyao Wang. |
260 | |a Hackensack, NJ : |b World Scientific, |c 2006. | ||
300 | |a 1 online resource (x, 248 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 241-246) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. | ||
505 | 0 | |a Preface -- 1. Background. 1.1. Banach algebra. 1.2. K-theory of Banach algebra. 1.3. The basic of complex geometry. 1.4. Some results on Cowen-Douglas operators. 1.5. Strongly irreducible operators. 1.6. Compact perturbation of operators. 1.7. Similarity orbit theorem. 1.8. Toeplitz operator and Sobolev space -- 2. Jordan standard theorem and K[symbol]-group. 2.1. Generalized Eigenspace and minimal idempotents. 2.2. Similarity invariant of matrix. 2.3. Remark -- 3. Approximate Jordan theorem of operators. 3.1. Sum of strongly irreducible operators. 3.2. Approximate Jordan decomposition theorem. 3.3. Open problems. 3.4. Remark -- 4. Unitary invariant and similarity invariant of operators. 4.1. Unitary invariants of operators. 4.2. Strongly irreducible decomposition of operators and similarity invariant: K[symbol]-group. 4.3. (SI) decompositions of some classes of operators. 4.4. The commutant of Cowen-Douglas operators. 4.5. The Sobolev disk algebra. 4.6. The operator weighted shift. 4.7. Open problem. 4.8. Remark -- 5. The similarity invariant of Cowen-Douglas operators. 5.1. The Cowen-Douglas operators with index 1. 5.2. Cowen-Douglas operators with index n. 5.3. The commutant of Cowen-Douglas operators. 5.4. The commutant of a classes of operators. 5.5. The (5I) representation theorem of Cowen-Douglas operators. 5.6. Maximal ideals of the commutant of Cowen-Douglas operators. 5.7. Some approximation theorem. 5.8. Remark. 5.9. Open problem -- 6. Some other results about operator structure. 6.1. K[symbol]-group of some Banach algebra. 6.2. Similarity and quasisimilarity. 6.3. Application of operator structure theorem. 6.4. Remark. 6.5. Open problems. | |
546 | |a English. | ||
650 | 0 | |a Hilbert space. |0 http://id.loc.gov/authorities/subjects/sh85060803 | |
650 | 0 | |a Linear operators. |0 http://id.loc.gov/authorities/subjects/sh85077178 | |
650 | 6 | |a Espace de Hilbert. | |
650 | 6 | |a Opérateurs linéaires. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Hilbert space |2 fast | |
650 | 7 | |a Linear operators |2 fast | |
700 | 1 | |a Wang, Zongyao. |1 https://id.oclc.org/worldcat/entity/E39PCjH6cMYwjV6kqJW4YgTHyd |0 http://id.loc.gov/authorities/names/no99057539 | |
758 | |i has work: |a Structure of Hilbert space operators (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFycD3RGQQGCcpjJ63B8wd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Jiang, Chunlan. |t Structure of Hilbert space operators. |d Hackensack, NJ : World Scientific, 2006 |w (DLC) 2006283691 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210755 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684523 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1681732 | ||
938 | |a EBSCOhost |b EBSC |n 210755 | ||
938 | |a YBP Library Services |b YANK |n 2740376 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn299585014 |
---|---|
_version_ | 1816881684899954688 |
adam_text | |
any_adam_object | |
author | Jiang, Chunlan |
author2 | Wang, Zongyao |
author2_role | |
author2_variant | z w zw |
author_GND | http://id.loc.gov/authorities/names/no99057541 http://id.loc.gov/authorities/names/no99057539 |
author_facet | Jiang, Chunlan Wang, Zongyao |
author_role | |
author_sort | Jiang, Chunlan |
author_variant | c j cj |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA322 |
callnumber-raw | QA322.4 .J53 2006eb |
callnumber-search | QA322.4 .J53 2006eb |
callnumber-sort | QA 3322.4 J53 42006EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface -- 1. Background. 1.1. Banach algebra. 1.2. K-theory of Banach algebra. 1.3. The basic of complex geometry. 1.4. Some results on Cowen-Douglas operators. 1.5. Strongly irreducible operators. 1.6. Compact perturbation of operators. 1.7. Similarity orbit theorem. 1.8. Toeplitz operator and Sobolev space -- 2. Jordan standard theorem and K[symbol]-group. 2.1. Generalized Eigenspace and minimal idempotents. 2.2. Similarity invariant of matrix. 2.3. Remark -- 3. Approximate Jordan theorem of operators. 3.1. Sum of strongly irreducible operators. 3.2. Approximate Jordan decomposition theorem. 3.3. Open problems. 3.4. Remark -- 4. Unitary invariant and similarity invariant of operators. 4.1. Unitary invariants of operators. 4.2. Strongly irreducible decomposition of operators and similarity invariant: K[symbol]-group. 4.3. (SI) decompositions of some classes of operators. 4.4. The commutant of Cowen-Douglas operators. 4.5. The Sobolev disk algebra. 4.6. The operator weighted shift. 4.7. Open problem. 4.8. Remark -- 5. The similarity invariant of Cowen-Douglas operators. 5.1. The Cowen-Douglas operators with index 1. 5.2. Cowen-Douglas operators with index n. 5.3. The commutant of Cowen-Douglas operators. 5.4. The commutant of a classes of operators. 5.5. The (5I) representation theorem of Cowen-Douglas operators. 5.6. Maximal ideals of the commutant of Cowen-Douglas operators. 5.7. Some approximation theorem. 5.8. Remark. 5.9. Open problem -- 6. Some other results about operator structure. 6.1. K[symbol]-group of some Banach algebra. 6.2. Similarity and quasisimilarity. 6.3. Application of operator structure theorem. 6.4. Remark. 6.5. Open problems. |
ctrlnum | (OCoLC)299585014 |
dewey-full | 515.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.733 |
dewey-search | 515.733 |
dewey-sort | 3515.733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05300cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn299585014</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">090123s2006 nju ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2006283691</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">182522736</subfield><subfield code="a">647684506</subfield><subfield code="a">815750023</subfield><subfield code="a">879025635</subfield><subfield code="a">961534997</subfield><subfield code="a">962606894</subfield><subfield code="a">1259129911</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812774484</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812774483</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281919519</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281919519</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812566164</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812566163</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611919511</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611919511</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)299585014</subfield><subfield code="z">(OCoLC)182522736</subfield><subfield code="z">(OCoLC)647684506</subfield><subfield code="z">(OCoLC)815750023</subfield><subfield code="z">(OCoLC)879025635</subfield><subfield code="z">(OCoLC)961534997</subfield><subfield code="z">(OCoLC)962606894</subfield><subfield code="z">(OCoLC)1259129911</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA322.4</subfield><subfield code="b">.J53 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TJFD5</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.733</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Chunlan.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjwfrKjdrgkWc8qCHJ9bMK</subfield><subfield code="0">http://id.loc.gov/authorities/names/no99057541</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure of Hilbert space operators /</subfield><subfield code="c">Chunlan Jiang, Zongyao Wang.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 248 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 241-246) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- 1. Background. 1.1. Banach algebra. 1.2. K-theory of Banach algebra. 1.3. The basic of complex geometry. 1.4. Some results on Cowen-Douglas operators. 1.5. Strongly irreducible operators. 1.6. Compact perturbation of operators. 1.7. Similarity orbit theorem. 1.8. Toeplitz operator and Sobolev space -- 2. Jordan standard theorem and K[symbol]-group. 2.1. Generalized Eigenspace and minimal idempotents. 2.2. Similarity invariant of matrix. 2.3. Remark -- 3. Approximate Jordan theorem of operators. 3.1. Sum of strongly irreducible operators. 3.2. Approximate Jordan decomposition theorem. 3.3. Open problems. 3.4. Remark -- 4. Unitary invariant and similarity invariant of operators. 4.1. Unitary invariants of operators. 4.2. Strongly irreducible decomposition of operators and similarity invariant: K[symbol]-group. 4.3. (SI) decompositions of some classes of operators. 4.4. The commutant of Cowen-Douglas operators. 4.5. The Sobolev disk algebra. 4.6. The operator weighted shift. 4.7. Open problem. 4.8. Remark -- 5. The similarity invariant of Cowen-Douglas operators. 5.1. The Cowen-Douglas operators with index 1. 5.2. Cowen-Douglas operators with index n. 5.3. The commutant of Cowen-Douglas operators. 5.4. The commutant of a classes of operators. 5.5. The (5I) representation theorem of Cowen-Douglas operators. 5.6. Maximal ideals of the commutant of Cowen-Douglas operators. 5.7. Some approximation theorem. 5.8. Remark. 5.9. Open problem -- 6. Some other results about operator structure. 6.1. K[symbol]-group of some Banach algebra. 6.2. Similarity and quasisimilarity. 6.3. Application of operator structure theorem. 6.4. Remark. 6.5. Open problems.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hilbert space.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85060803</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Linear operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85077178</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espace de Hilbert.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Transformations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert space</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zongyao.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjH6cMYwjV6kqJW4YgTHyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/no99057539</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Structure of Hilbert space operators (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFycD3RGQQGCcpjJ63B8wd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Jiang, Chunlan.</subfield><subfield code="t">Structure of Hilbert space operators.</subfield><subfield code="d">Hackensack, NJ : World Scientific, 2006</subfield><subfield code="w">(DLC) 2006283691</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210755</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684523</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681732</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210755</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2740376</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn299585014 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:38Z |
institution | BVB |
isbn | 9789812774484 9812774483 1281919519 9781281919519 9786611919511 6611919511 |
language | English |
oclc_num | 299585014 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 248 pages) |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
spelling | Jiang, Chunlan. https://id.oclc.org/worldcat/entity/E39PCjwfrKjdrgkWc8qCHJ9bMK http://id.loc.gov/authorities/names/no99057541 Structure of Hilbert space operators / Chunlan Jiang, Zongyao Wang. Hackensack, NJ : World Scientific, 2006. 1 online resource (x, 248 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 241-246) and index. Print version record. Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. Preface -- 1. Background. 1.1. Banach algebra. 1.2. K-theory of Banach algebra. 1.3. The basic of complex geometry. 1.4. Some results on Cowen-Douglas operators. 1.5. Strongly irreducible operators. 1.6. Compact perturbation of operators. 1.7. Similarity orbit theorem. 1.8. Toeplitz operator and Sobolev space -- 2. Jordan standard theorem and K[symbol]-group. 2.1. Generalized Eigenspace and minimal idempotents. 2.2. Similarity invariant of matrix. 2.3. Remark -- 3. Approximate Jordan theorem of operators. 3.1. Sum of strongly irreducible operators. 3.2. Approximate Jordan decomposition theorem. 3.3. Open problems. 3.4. Remark -- 4. Unitary invariant and similarity invariant of operators. 4.1. Unitary invariants of operators. 4.2. Strongly irreducible decomposition of operators and similarity invariant: K[symbol]-group. 4.3. (SI) decompositions of some classes of operators. 4.4. The commutant of Cowen-Douglas operators. 4.5. The Sobolev disk algebra. 4.6. The operator weighted shift. 4.7. Open problem. 4.8. Remark -- 5. The similarity invariant of Cowen-Douglas operators. 5.1. The Cowen-Douglas operators with index 1. 5.2. Cowen-Douglas operators with index n. 5.3. The commutant of Cowen-Douglas operators. 5.4. The commutant of a classes of operators. 5.5. The (5I) representation theorem of Cowen-Douglas operators. 5.6. Maximal ideals of the commutant of Cowen-Douglas operators. 5.7. Some approximation theorem. 5.8. Remark. 5.9. Open problem -- 6. Some other results about operator structure. 6.1. K[symbol]-group of some Banach algebra. 6.2. Similarity and quasisimilarity. 6.3. Application of operator structure theorem. 6.4. Remark. 6.5. Open problems. English. Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Linear operators. http://id.loc.gov/authorities/subjects/sh85077178 Espace de Hilbert. Opérateurs linéaires. MATHEMATICS Transformations. bisacsh Hilbert space fast Linear operators fast Wang, Zongyao. https://id.oclc.org/worldcat/entity/E39PCjH6cMYwjV6kqJW4YgTHyd http://id.loc.gov/authorities/names/no99057539 has work: Structure of Hilbert space operators (Text) https://id.oclc.org/worldcat/entity/E39PCFycD3RGQQGCcpjJ63B8wd https://id.oclc.org/worldcat/ontology/hasWork Print version: Jiang, Chunlan. Structure of Hilbert space operators. Hackensack, NJ : World Scientific, 2006 (DLC) 2006283691 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210755 Volltext |
spellingShingle | Jiang, Chunlan Structure of Hilbert space operators / Preface -- 1. Background. 1.1. Banach algebra. 1.2. K-theory of Banach algebra. 1.3. The basic of complex geometry. 1.4. Some results on Cowen-Douglas operators. 1.5. Strongly irreducible operators. 1.6. Compact perturbation of operators. 1.7. Similarity orbit theorem. 1.8. Toeplitz operator and Sobolev space -- 2. Jordan standard theorem and K[symbol]-group. 2.1. Generalized Eigenspace and minimal idempotents. 2.2. Similarity invariant of matrix. 2.3. Remark -- 3. Approximate Jordan theorem of operators. 3.1. Sum of strongly irreducible operators. 3.2. Approximate Jordan decomposition theorem. 3.3. Open problems. 3.4. Remark -- 4. Unitary invariant and similarity invariant of operators. 4.1. Unitary invariants of operators. 4.2. Strongly irreducible decomposition of operators and similarity invariant: K[symbol]-group. 4.3. (SI) decompositions of some classes of operators. 4.4. The commutant of Cowen-Douglas operators. 4.5. The Sobolev disk algebra. 4.6. The operator weighted shift. 4.7. Open problem. 4.8. Remark -- 5. The similarity invariant of Cowen-Douglas operators. 5.1. The Cowen-Douglas operators with index 1. 5.2. Cowen-Douglas operators with index n. 5.3. The commutant of Cowen-Douglas operators. 5.4. The commutant of a classes of operators. 5.5. The (5I) representation theorem of Cowen-Douglas operators. 5.6. Maximal ideals of the commutant of Cowen-Douglas operators. 5.7. Some approximation theorem. 5.8. Remark. 5.9. Open problem -- 6. Some other results about operator structure. 6.1. K[symbol]-group of some Banach algebra. 6.2. Similarity and quasisimilarity. 6.3. Application of operator structure theorem. 6.4. Remark. 6.5. Open problems. Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Linear operators. http://id.loc.gov/authorities/subjects/sh85077178 Espace de Hilbert. Opérateurs linéaires. MATHEMATICS Transformations. bisacsh Hilbert space fast Linear operators fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85060803 http://id.loc.gov/authorities/subjects/sh85077178 |
title | Structure of Hilbert space operators / |
title_auth | Structure of Hilbert space operators / |
title_exact_search | Structure of Hilbert space operators / |
title_full | Structure of Hilbert space operators / Chunlan Jiang, Zongyao Wang. |
title_fullStr | Structure of Hilbert space operators / Chunlan Jiang, Zongyao Wang. |
title_full_unstemmed | Structure of Hilbert space operators / Chunlan Jiang, Zongyao Wang. |
title_short | Structure of Hilbert space operators / |
title_sort | structure of hilbert space operators |
topic | Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Linear operators. http://id.loc.gov/authorities/subjects/sh85077178 Espace de Hilbert. Opérateurs linéaires. MATHEMATICS Transformations. bisacsh Hilbert space fast Linear operators fast |
topic_facet | Hilbert space. Linear operators. Espace de Hilbert. Opérateurs linéaires. MATHEMATICS Transformations. Hilbert space Linear operators |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210755 |
work_keys_str_mv | AT jiangchunlan structureofhilbertspaceoperators AT wangzongyao structureofhilbertspaceoperators |