Stark effect in a hydrogenic atom or ion :: treated by the phase-integral method /
This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, fol...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London, UK :
Imperial College Press,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular base function non-relativistic formulas for profiles, energies and half-widths of the Stark levels. These formulas are then transformed into formulas expressed in terms of complete elliptic integrals. The formulas thus obtained are used for the calculation of energies and half-widths of 198 different Stark states, which are compared with the corresponding results obtained by other authors with the use of other methods. An analysis of this material indicates that the energy values obtained by the phase-integral method are at least as accurate as those obtained by other methods in more than half of the 198 cases. The book presents one of the most comprehensive asymptotic treatments of the Stark effect in atomic hydrogen that have been published. |
Beschreibung: | 1 online resource (viii, 153 pages) : illustrations |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 1860949258 9781860949258 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn294759399 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr zn||||||||| | ||
008 | 080625s2008 enka ob 001 0 eng d | ||
040 | |a CDX |b eng |e pn |c CDX |d OCLCQ |d N$T |d IDEBK |d E7B |d OCLCQ |d OCLCF |d OCLCQ |d M6U |d OCLCQ |d YDXCP |d STF |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFAG |d OCLCQ |d U3W |d WRM |d VTS |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d M8D |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 262555488 |a 646769001 |a 696629437 |a 961540226 |a 962607318 |a 988427035 |a 992108929 |a 1037753798 |a 1038577456 |a 1045460698 |a 1055395472 |a 1064124310 |a 1081227405 |a 1153537406 |a 1228539052 | ||
020 | |a 1860949258 |q (electronic bk.) | ||
020 | |a 9781860949258 |q (electronic bk.) | ||
020 | |z 186094924X |q (Cloth) | ||
020 | |z 9781860949241 | ||
035 | |a (OCoLC)294759399 |z (OCoLC)262555488 |z (OCoLC)646769001 |z (OCoLC)696629437 |z (OCoLC)961540226 |z (OCoLC)962607318 |z (OCoLC)988427035 |z (OCoLC)992108929 |z (OCoLC)1037753798 |z (OCoLC)1038577456 |z (OCoLC)1045460698 |z (OCoLC)1055395472 |z (OCoLC)1064124310 |z (OCoLC)1081227405 |z (OCoLC)1153537406 |z (OCoLC)1228539052 | ||
050 | 4 | |a QC467 |b .F766 2008eb | |
072 | 7 | |a SCI |x 053000 |2 bisacsh | |
082 | 7 | |a 535.84 22 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Fröman, Nanny. |0 http://id.loc.gov/authorities/names/n83828021 | |
245 | 1 | 0 | |a Stark effect in a hydrogenic atom or ion : |b treated by the phase-integral method / |c Nanny Fröman, Per Olof Fröman ; with adjoined papers by A. Hökback and P.O. Fröman. |
260 | |a London, UK : |b Imperial College Press, |c ©2008. | ||
300 | |a 1 online resource (viii, 153 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction -- 2. Schrödinger equation, its seperation and its exact eigenfunctions. 2.1. Separation of the time-independent Schrd̈inger equation for the internal motion. 2.2. Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion -- 3. Development in time of the probability amplitude for a decaying state -- 4. Phase-integral method. 4.1. Phase-integral approximation generated from an unspecified base function. 4.2. Connection formulas associated with a single transition point -- 5. Derivation of phase-integral formulas for profiles, energies and half-widths of Stark levels. 5.1. Positions of the Stark levels. 5.2. Formulas for the calculation of dL/dE, dK[symbol]/dE and dK/dE. 5.3. Half-widths of the Stark intervals -- 6. Procedure for transformation of the phase-integral formulas into formulas involving complete elliptic integrals -- Adjoined papers by Anders Hökback and Per Olof Fröman -- 7. Phase-inegral quantities and their partial derivatives with respect to [symbol] and [symbol] expressed in terms of complete elliptic integrals. 7.1. The [symbol]-equation. 7.2. The [symbol]-equation in the sub-barrier case. 7.3. The [symbol]-equation in the super-barrier case -- 8. Numerical results. | |
520 | |a This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular base function non-relativistic formulas for profiles, energies and half-widths of the Stark levels. These formulas are then transformed into formulas expressed in terms of complete elliptic integrals. The formulas thus obtained are used for the calculation of energies and half-widths of 198 different Stark states, which are compared with the corresponding results obtained by other authors with the use of other methods. An analysis of this material indicates that the energy values obtained by the phase-integral method are at least as accurate as those obtained by other methods in more than half of the 198 cases. The book presents one of the most comprehensive asymptotic treatments of the Stark effect in atomic hydrogen that have been published. | ||
650 | 0 | |a Stark effect. |0 http://id.loc.gov/authorities/subjects/sh85127404 | |
650 | 0 | |a Optical spectroscopy. |0 http://id.loc.gov/authorities/subjects/sh2006002572 | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 0 | |a Schrödinger equation. |0 http://id.loc.gov/authorities/subjects/sh85118495 | |
650 | 6 | |a Effet Stark. | |
650 | 6 | |a Spectroscopie optique. | |
650 | 6 | |a Théorie quantique. | |
650 | 6 | |a Équation de Schrödinger. | |
650 | 7 | |a SCIENCE |x Physics |x Optics & Light. |2 bisacsh | |
650 | 7 | |a Optical spectroscopy |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Schrödinger equation |2 fast | |
650 | 7 | |a Stark effect |2 fast | |
700 | 1 | |a Fröman, Per Olof. |0 http://id.loc.gov/authorities/names/n83828022 | |
700 | 1 | |a Hökback, A. | |
758 | |i has work: |a Stark effect in a hydrogenic atom or ion (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGrRFHhybh4hrwhjy393Bd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Fröman, Nanny. |t Stark effect in a hydrogenic atom or ion. |d London, UK : Imperial College Press, ©2008 |w (DLC) 2008299745 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236108 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Coutts Information Services |b COUT |n 9313240 | ||
938 | |a EBSCOhost |b EBSC |n 236108 | ||
938 | |a YBP Library Services |b YANK |n 2891814 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn294759399 |
---|---|
_version_ | 1816881684599013377 |
adam_text | |
any_adam_object | |
author | Fröman, Nanny |
author2 | Fröman, Per Olof Hökback, A. |
author2_role | |
author2_variant | p o f po pof a h ah |
author_GND | http://id.loc.gov/authorities/names/n83828021 http://id.loc.gov/authorities/names/n83828022 |
author_facet | Fröman, Nanny Fröman, Per Olof Hökback, A. |
author_role | |
author_sort | Fröman, Nanny |
author_variant | n f nf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC467 |
callnumber-raw | QC467 .F766 2008eb |
callnumber-search | QC467 .F766 2008eb |
callnumber-sort | QC 3467 F766 42008EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. Schrödinger equation, its seperation and its exact eigenfunctions. 2.1. Separation of the time-independent Schrd̈inger equation for the internal motion. 2.2. Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion -- 3. Development in time of the probability amplitude for a decaying state -- 4. Phase-integral method. 4.1. Phase-integral approximation generated from an unspecified base function. 4.2. Connection formulas associated with a single transition point -- 5. Derivation of phase-integral formulas for profiles, energies and half-widths of Stark levels. 5.1. Positions of the Stark levels. 5.2. Formulas for the calculation of dL/dE, dK[symbol]/dE and dK/dE. 5.3. Half-widths of the Stark intervals -- 6. Procedure for transformation of the phase-integral formulas into formulas involving complete elliptic integrals -- Adjoined papers by Anders Hökback and Per Olof Fröman -- 7. Phase-inegral quantities and their partial derivatives with respect to [symbol] and [symbol] expressed in terms of complete elliptic integrals. 7.1. The [symbol]-equation. 7.2. The [symbol]-equation in the sub-barrier case. 7.3. The [symbol]-equation in the super-barrier case -- 8. Numerical results. |
ctrlnum | (OCoLC)294759399 |
dewey-full | 535.8422 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation |
dewey-raw | 535.84 22 |
dewey-search | 535.84 22 |
dewey-sort | 3535.84 222 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05983cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn294759399</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr zn|||||||||</controlfield><controlfield tag="008">080625s2008 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">262555488</subfield><subfield code="a">646769001</subfield><subfield code="a">696629437</subfield><subfield code="a">961540226</subfield><subfield code="a">962607318</subfield><subfield code="a">988427035</subfield><subfield code="a">992108929</subfield><subfield code="a">1037753798</subfield><subfield code="a">1038577456</subfield><subfield code="a">1045460698</subfield><subfield code="a">1055395472</subfield><subfield code="a">1064124310</subfield><subfield code="a">1081227405</subfield><subfield code="a">1153537406</subfield><subfield code="a">1228539052</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860949258</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860949258</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">186094924X</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781860949241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)294759399</subfield><subfield code="z">(OCoLC)262555488</subfield><subfield code="z">(OCoLC)646769001</subfield><subfield code="z">(OCoLC)696629437</subfield><subfield code="z">(OCoLC)961540226</subfield><subfield code="z">(OCoLC)962607318</subfield><subfield code="z">(OCoLC)988427035</subfield><subfield code="z">(OCoLC)992108929</subfield><subfield code="z">(OCoLC)1037753798</subfield><subfield code="z">(OCoLC)1038577456</subfield><subfield code="z">(OCoLC)1045460698</subfield><subfield code="z">(OCoLC)1055395472</subfield><subfield code="z">(OCoLC)1064124310</subfield><subfield code="z">(OCoLC)1081227405</subfield><subfield code="z">(OCoLC)1153537406</subfield><subfield code="z">(OCoLC)1228539052</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC467</subfield><subfield code="b">.F766 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">053000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">535.84 22</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fröman, Nanny.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83828021</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stark effect in a hydrogenic atom or ion :</subfield><subfield code="b">treated by the phase-integral method /</subfield><subfield code="c">Nanny Fröman, Per Olof Fröman ; with adjoined papers by A. Hökback and P.O. Fröman.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London, UK :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 153 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. Schrödinger equation, its seperation and its exact eigenfunctions. 2.1. Separation of the time-independent Schrd̈inger equation for the internal motion. 2.2. Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion -- 3. Development in time of the probability amplitude for a decaying state -- 4. Phase-integral method. 4.1. Phase-integral approximation generated from an unspecified base function. 4.2. Connection formulas associated with a single transition point -- 5. Derivation of phase-integral formulas for profiles, energies and half-widths of Stark levels. 5.1. Positions of the Stark levels. 5.2. Formulas for the calculation of dL/dE, dK[symbol]/dE and dK/dE. 5.3. Half-widths of the Stark intervals -- 6. Procedure for transformation of the phase-integral formulas into formulas involving complete elliptic integrals -- Adjoined papers by Anders Hökback and Per Olof Fröman -- 7. Phase-inegral quantities and their partial derivatives with respect to [symbol] and [symbol] expressed in terms of complete elliptic integrals. 7.1. The [symbol]-equation. 7.2. The [symbol]-equation in the sub-barrier case. 7.3. The [symbol]-equation in the super-barrier case -- 8. Numerical results.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular base function non-relativistic formulas for profiles, energies and half-widths of the Stark levels. These formulas are then transformed into formulas expressed in terms of complete elliptic integrals. The formulas thus obtained are used for the calculation of energies and half-widths of 198 different Stark states, which are compared with the corresponding results obtained by other authors with the use of other methods. An analysis of this material indicates that the energy values obtained by the phase-integral method are at least as accurate as those obtained by other methods in more than half of the 198 cases. The book presents one of the most comprehensive asymptotic treatments of the Stark effect in atomic hydrogen that have been published.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stark effect.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85127404</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Optical spectroscopy.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2006002572</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Schrödinger equation.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85118495</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Effet Stark.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Spectroscopie optique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équation de Schrödinger.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Optics & Light.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optical spectroscopy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schrödinger equation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stark effect</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fröman, Per Olof.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83828022</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hökback, A.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Stark effect in a hydrogenic atom or ion (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGrRFHhybh4hrwhjy393Bd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fröman, Nanny.</subfield><subfield code="t">Stark effect in a hydrogenic atom or ion.</subfield><subfield code="d">London, UK : Imperial College Press, ©2008</subfield><subfield code="w">(DLC) 2008299745</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236108</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">9313240</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">236108</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2891814</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn294759399 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:37Z |
institution | BVB |
isbn | 1860949258 9781860949258 |
language | English |
oclc_num | 294759399 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 153 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Imperial College Press, |
record_format | marc |
spelling | Fröman, Nanny. http://id.loc.gov/authorities/names/n83828021 Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / Nanny Fröman, Per Olof Fröman ; with adjoined papers by A. Hökback and P.O. Fröman. London, UK : Imperial College Press, ©2008. 1 online resource (viii, 153 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and indexes. Print version record. 1. Introduction -- 2. Schrödinger equation, its seperation and its exact eigenfunctions. 2.1. Separation of the time-independent Schrd̈inger equation for the internal motion. 2.2. Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion -- 3. Development in time of the probability amplitude for a decaying state -- 4. Phase-integral method. 4.1. Phase-integral approximation generated from an unspecified base function. 4.2. Connection formulas associated with a single transition point -- 5. Derivation of phase-integral formulas for profiles, energies and half-widths of Stark levels. 5.1. Positions of the Stark levels. 5.2. Formulas for the calculation of dL/dE, dK[symbol]/dE and dK/dE. 5.3. Half-widths of the Stark intervals -- 6. Procedure for transformation of the phase-integral formulas into formulas involving complete elliptic integrals -- Adjoined papers by Anders Hökback and Per Olof Fröman -- 7. Phase-inegral quantities and their partial derivatives with respect to [symbol] and [symbol] expressed in terms of complete elliptic integrals. 7.1. The [symbol]-equation. 7.2. The [symbol]-equation in the sub-barrier case. 7.3. The [symbol]-equation in the super-barrier case -- 8. Numerical results. This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular base function non-relativistic formulas for profiles, energies and half-widths of the Stark levels. These formulas are then transformed into formulas expressed in terms of complete elliptic integrals. The formulas thus obtained are used for the calculation of energies and half-widths of 198 different Stark states, which are compared with the corresponding results obtained by other authors with the use of other methods. An analysis of this material indicates that the energy values obtained by the phase-integral method are at least as accurate as those obtained by other methods in more than half of the 198 cases. The book presents one of the most comprehensive asymptotic treatments of the Stark effect in atomic hydrogen that have been published. Stark effect. http://id.loc.gov/authorities/subjects/sh85127404 Optical spectroscopy. http://id.loc.gov/authorities/subjects/sh2006002572 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Effet Stark. Spectroscopie optique. Théorie quantique. Équation de Schrödinger. SCIENCE Physics Optics & Light. bisacsh Optical spectroscopy fast Quantum theory fast Schrödinger equation fast Stark effect fast Fröman, Per Olof. http://id.loc.gov/authorities/names/n83828022 Hökback, A. has work: Stark effect in a hydrogenic atom or ion (Text) https://id.oclc.org/worldcat/entity/E39PCGrRFHhybh4hrwhjy393Bd https://id.oclc.org/worldcat/ontology/hasWork Print version: Fröman, Nanny. Stark effect in a hydrogenic atom or ion. London, UK : Imperial College Press, ©2008 (DLC) 2008299745 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236108 Volltext |
spellingShingle | Fröman, Nanny Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / 1. Introduction -- 2. Schrödinger equation, its seperation and its exact eigenfunctions. 2.1. Separation of the time-independent Schrd̈inger equation for the internal motion. 2.2. Properties of the eigenfunctions of the time-independent Schrödinger equation for the internal motion -- 3. Development in time of the probability amplitude for a decaying state -- 4. Phase-integral method. 4.1. Phase-integral approximation generated from an unspecified base function. 4.2. Connection formulas associated with a single transition point -- 5. Derivation of phase-integral formulas for profiles, energies and half-widths of Stark levels. 5.1. Positions of the Stark levels. 5.2. Formulas for the calculation of dL/dE, dK[symbol]/dE and dK/dE. 5.3. Half-widths of the Stark intervals -- 6. Procedure for transformation of the phase-integral formulas into formulas involving complete elliptic integrals -- Adjoined papers by Anders Hökback and Per Olof Fröman -- 7. Phase-inegral quantities and their partial derivatives with respect to [symbol] and [symbol] expressed in terms of complete elliptic integrals. 7.1. The [symbol]-equation. 7.2. The [symbol]-equation in the sub-barrier case. 7.3. The [symbol]-equation in the super-barrier case -- 8. Numerical results. Stark effect. http://id.loc.gov/authorities/subjects/sh85127404 Optical spectroscopy. http://id.loc.gov/authorities/subjects/sh2006002572 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Effet Stark. Spectroscopie optique. Théorie quantique. Équation de Schrödinger. SCIENCE Physics Optics & Light. bisacsh Optical spectroscopy fast Quantum theory fast Schrödinger equation fast Stark effect fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85127404 http://id.loc.gov/authorities/subjects/sh2006002572 http://id.loc.gov/authorities/subjects/sh85109469 http://id.loc.gov/authorities/subjects/sh85118495 |
title | Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / |
title_auth | Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / |
title_exact_search | Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / |
title_full | Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / Nanny Fröman, Per Olof Fröman ; with adjoined papers by A. Hökback and P.O. Fröman. |
title_fullStr | Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / Nanny Fröman, Per Olof Fröman ; with adjoined papers by A. Hökback and P.O. Fröman. |
title_full_unstemmed | Stark effect in a hydrogenic atom or ion : treated by the phase-integral method / Nanny Fröman, Per Olof Fröman ; with adjoined papers by A. Hökback and P.O. Fröman. |
title_short | Stark effect in a hydrogenic atom or ion : |
title_sort | stark effect in a hydrogenic atom or ion treated by the phase integral method |
title_sub | treated by the phase-integral method / |
topic | Stark effect. http://id.loc.gov/authorities/subjects/sh85127404 Optical spectroscopy. http://id.loc.gov/authorities/subjects/sh2006002572 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Effet Stark. Spectroscopie optique. Théorie quantique. Équation de Schrödinger. SCIENCE Physics Optics & Light. bisacsh Optical spectroscopy fast Quantum theory fast Schrödinger equation fast Stark effect fast |
topic_facet | Stark effect. Optical spectroscopy. Quantum theory. Schrödinger equation. Effet Stark. Spectroscopie optique. Théorie quantique. Équation de Schrödinger. SCIENCE Physics Optics & Light. Optical spectroscopy Quantum theory Schrödinger equation Stark effect |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236108 |
work_keys_str_mv | AT fromannanny starkeffectinahydrogenicatomoriontreatedbythephaseintegralmethod AT fromanperolof starkeffectinahydrogenicatomoriontreatedbythephaseintegralmethod AT hokbacka starkeffectinahydrogenicatomoriontreatedbythephaseintegralmethod |