Dissipative phase transitions /:
Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in po...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, N.J. :
World Scientific,
©2006.
|
Schriftenreihe: | Series on advances in mathematics for applied sciences ;
v. 71. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects. |
Beschreibung: | 1 online resource (xii, 300 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789812774293 9812774297 1281378887 9781281378880 9786611378882 661137888X |
ISSN: | 1793-0901 ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn285162701 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 081208s2006 njua ob 000 0 eng d | ||
010 | |z 2005046719 | ||
040 | |a CaPaEBR |b eng |e pn |c CUY |d OCLCQ |d N$T |d YDXCP |d IDEBK |d E7B |d OCLCQ |d DKDLA |d OCLCQ |d OCLCF |d OCLCO |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d CCO |d PIFBR |d OCLCQ |d JBG |d OCLCQ |d STF |d WRM |d VTS |d VT2 |d OCLCQ |d M8D |d UKAHL |d UKCRE |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
019 | |a 182520806 |a 474661507 |a 474713504 |a 647684373 |a 748527944 |a 815571396 |a 888835421 |a 961586186 |a 962559140 |a 988520327 |a 991913650 |a 1037704112 |a 1038667721 |a 1045476332 |a 1055360028 |a 1081220955 |a 1153523206 |a 1228575518 |a 1259068307 | ||
020 | |a 9789812774293 |q (electronic bk.) | ||
020 | |a 9812774297 |q (electronic bk.) | ||
020 | |a 1281378887 | ||
020 | |a 9781281378880 | ||
020 | |z 9812566503 |q (alk. paper) | ||
020 | |z 9789812566508 | ||
020 | |a 9786611378882 | ||
020 | |a 661137888X | ||
035 | |a (OCoLC)285162701 |z (OCoLC)182520806 |z (OCoLC)474661507 |z (OCoLC)474713504 |z (OCoLC)647684373 |z (OCoLC)748527944 |z (OCoLC)815571396 |z (OCoLC)888835421 |z (OCoLC)961586186 |z (OCoLC)962559140 |z (OCoLC)988520327 |z (OCoLC)991913650 |z (OCoLC)1037704112 |z (OCoLC)1038667721 |z (OCoLC)1045476332 |z (OCoLC)1055360028 |z (OCoLC)1081220955 |z (OCoLC)1153523206 |z (OCoLC)1228575518 |z (OCoLC)1259068307 | ||
050 | 4 | |a QC175.16.P5 |b D57 2006eb | |
072 | 7 | |a SCI |x 055000 |2 bisacsh | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 024000 |2 bisacsh | |
072 | 7 | |a PHF |2 bicssc | |
082 | 7 | |a 530.4/74 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Dissipative phase transitions / |c editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels. |
260 | |a Hackensack, N.J. : |b World Scientific, |c ©2006. | ||
300 | |a 1 online resource (xii, 300 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Series on advances in mathematics for applied sciences, |x 1793-0901 ; |v v. 71 | |
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1. | |
520 | |a Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Phase transformations (Statistical physics) |0 http://id.loc.gov/authorities/subjects/sh85100646 | |
650 | 0 | |a Phase transformations (Statistical physics) |x Mathematical models. | |
650 | 0 | |a Energy dissipation. |0 http://id.loc.gov/authorities/subjects/sh90000752 | |
650 | 6 | |a Transitions de phase. | |
650 | 6 | |a Transitions de phase |x Modèles mathématiques. | |
650 | 6 | |a Dissipation d'énergie. | |
650 | 7 | |a SCIENCE |x Physics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Energy. |2 bisacsh | |
650 | 7 | |a Energy dissipation |2 fast | |
650 | 7 | |a Phase transformations (Statistical physics) |2 fast | |
650 | 7 | |a Phase transformations (Statistical physics) |x Mathematical models |2 fast | |
700 | 1 | |a Colli, P. |q (Pierluigi), |d 1958- |1 https://id.oclc.org/worldcat/entity/E39PCjGTgKXDbVm8BfQ9vWm3cd |0 http://id.loc.gov/authorities/names/n2003010828 | |
700 | 1 | |a Kenmochi, Nobuyuki. |0 http://id.loc.gov/authorities/names/no2002032555 | |
700 | 1 | |a Sprekels, J. |0 http://id.loc.gov/authorities/names/n88040969 | |
758 | |i has work: |a Dissipative phase transitions (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFHDVjKYMkw6GrbGVdjwG3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Dissipative phase transitions. |d Hackensack, N.J. : World Scientific, ©2006 |w (DLC) 2005046719 |
830 | 0 | |a Series on advances in mathematics for applied sciences ; |v v. 71. |0 http://id.loc.gov/authorities/names/n90710999 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210571 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684507 | ||
938 | |a EBSCOhost |b EBSC |n 210571 | ||
938 | |a YBP Library Services |b YANK |n 2740363 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn285162701 |
---|---|
_version_ | 1816881681306484736 |
adam_text | |
any_adam_object | |
author2 | Colli, P. (Pierluigi), 1958- Kenmochi, Nobuyuki Sprekels, J. |
author2_role | |
author2_variant | p c pc n k nk j s js |
author_GND | http://id.loc.gov/authorities/names/n2003010828 http://id.loc.gov/authorities/names/no2002032555 http://id.loc.gov/authorities/names/n88040969 |
author_facet | Colli, P. (Pierluigi), 1958- Kenmochi, Nobuyuki Sprekels, J. |
author_sort | Colli, P. 1958- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC175 |
callnumber-raw | QC175.16.P5 D57 2006eb |
callnumber-search | QC175.16.P5 D57 2006eb |
callnumber-sort | QC 3175.16 P5 D57 42006EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1. |
ctrlnum | (OCoLC)285162701 |
dewey-full | 530.4/74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/74 |
dewey-search | 530.4/74 |
dewey-sort | 3530.4 274 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05660cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn285162701</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">081208s2006 njua ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2005046719</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">182520806</subfield><subfield code="a">474661507</subfield><subfield code="a">474713504</subfield><subfield code="a">647684373</subfield><subfield code="a">748527944</subfield><subfield code="a">815571396</subfield><subfield code="a">888835421</subfield><subfield code="a">961586186</subfield><subfield code="a">962559140</subfield><subfield code="a">988520327</subfield><subfield code="a">991913650</subfield><subfield code="a">1037704112</subfield><subfield code="a">1038667721</subfield><subfield code="a">1045476332</subfield><subfield code="a">1055360028</subfield><subfield code="a">1081220955</subfield><subfield code="a">1153523206</subfield><subfield code="a">1228575518</subfield><subfield code="a">1259068307</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812774293</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812774297</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281378887</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281378880</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812566503</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812566508</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611378882</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">661137888X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)285162701</subfield><subfield code="z">(OCoLC)182520806</subfield><subfield code="z">(OCoLC)474661507</subfield><subfield code="z">(OCoLC)474713504</subfield><subfield code="z">(OCoLC)647684373</subfield><subfield code="z">(OCoLC)748527944</subfield><subfield code="z">(OCoLC)815571396</subfield><subfield code="z">(OCoLC)888835421</subfield><subfield code="z">(OCoLC)961586186</subfield><subfield code="z">(OCoLC)962559140</subfield><subfield code="z">(OCoLC)988520327</subfield><subfield code="z">(OCoLC)991913650</subfield><subfield code="z">(OCoLC)1037704112</subfield><subfield code="z">(OCoLC)1038667721</subfield><subfield code="z">(OCoLC)1045476332</subfield><subfield code="z">(OCoLC)1055360028</subfield><subfield code="z">(OCoLC)1081220955</subfield><subfield code="z">(OCoLC)1153523206</subfield><subfield code="z">(OCoLC)1228575518</subfield><subfield code="z">(OCoLC)1259068307</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC175.16.P5</subfield><subfield code="b">D57 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">055000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">024000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.4/74</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Dissipative phase transitions /</subfield><subfield code="c">editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 300 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences,</subfield><subfield code="x">1793-0901 ;</subfield><subfield code="v">v. 71</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85100646</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Energy dissipation.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90000752</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transitions de phase.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transitions de phase</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dissipation d'énergie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Energy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Energy dissipation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phase transformations (Statistical physics)</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Colli, P.</subfield><subfield code="q">(Pierluigi),</subfield><subfield code="d">1958-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGTgKXDbVm8BfQ9vWm3cd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003010828</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kenmochi, Nobuyuki.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2002032555</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sprekels, J.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88040969</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Dissipative phase transitions (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFHDVjKYMkw6GrbGVdjwG3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Dissipative phase transitions.</subfield><subfield code="d">Hackensack, N.J. : World Scientific, ©2006</subfield><subfield code="w">(DLC) 2005046719</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 71.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90710999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210571</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684507</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210571</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2740363</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn285162701 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:35Z |
institution | BVB |
isbn | 9789812774293 9812774297 1281378887 9781281378880 9786611378882 661137888X |
issn | 1793-0901 ; |
language | English |
oclc_num | 285162701 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 300 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
series | Series on advances in mathematics for applied sciences ; |
series2 | Series on advances in mathematics for applied sciences, |
spelling | Dissipative phase transitions / editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels. Hackensack, N.J. : World Scientific, ©2006. 1 online resource (xii, 300 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Series on advances in mathematics for applied sciences, 1793-0901 ; v. 71 Includes bibliographical references. Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1. Phase transition phenomena arise in a variety of relevant real world situations, such as melting and freezing in a solid?liquid system, evaporation, solid?solid phase transitions in shape memory alloys, combustion, crystal growth, damage in elastic materials, glass formation, phase transitions in polymers, and plasticity. The practical interest of such phenomenology is evident and has deeply influenced the technological development of our society, stimulating intense mathematical research in this area. This book analyzes and approximates some models and related partial differential equation problems that involve phase transitions in different contexts and include dissipation effects. Print version record. English. Phase transformations (Statistical physics) http://id.loc.gov/authorities/subjects/sh85100646 Phase transformations (Statistical physics) Mathematical models. Energy dissipation. http://id.loc.gov/authorities/subjects/sh90000752 Transitions de phase. Transitions de phase Modèles mathématiques. Dissipation d'énergie. SCIENCE Physics General. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Energy. bisacsh Energy dissipation fast Phase transformations (Statistical physics) fast Phase transformations (Statistical physics) Mathematical models fast Colli, P. (Pierluigi), 1958- https://id.oclc.org/worldcat/entity/E39PCjGTgKXDbVm8BfQ9vWm3cd http://id.loc.gov/authorities/names/n2003010828 Kenmochi, Nobuyuki. http://id.loc.gov/authorities/names/no2002032555 Sprekels, J. http://id.loc.gov/authorities/names/n88040969 has work: Dissipative phase transitions (Text) https://id.oclc.org/worldcat/entity/E39PCFHDVjKYMkw6GrbGVdjwG3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Dissipative phase transitions. Hackensack, N.J. : World Scientific, ©2006 (DLC) 2005046719 Series on advances in mathematics for applied sciences ; v. 71. http://id.loc.gov/authorities/names/n90710999 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210571 Volltext |
spellingShingle | Dissipative phase transitions / Series on advances in mathematics for applied sciences ; Cover -- CONTENTS -- Preface -- Mathematical models including a hysteresis operator -- 1 Introduction -- 2 Mathematical treatment for hysteresis operator -- 2.1 Play operator -- 2.2 Stop operator -- 2.3 The Duhem model -- 3 Shape memory alloys -- 4 Examples of hysteresis operator -- 4.1 Solid-liquid phase transition -- 4.2 Biological model -- 4.3 Magnetostrictive thin film multi-layers -- References -- Modelling phase transitions via an entropy equation: long-time behaviour of the solutions -- 1 Introduction -- 2 The model and the resulting PDE's system -- 3 Main results -- 4 The existence and uniqueness result -- 4.1 Proof of Theorem 5 -- 5 Uniform estimates on (0. +oo) -- 6 The w-limit -- References -- Global solution to a one dimensional phase transition model with strong dissipation -- 1 Introduction and derivation of the model -- 2 Notation and main results -- 3 Proof of Theorem 1. Phase transformations (Statistical physics) http://id.loc.gov/authorities/subjects/sh85100646 Phase transformations (Statistical physics) Mathematical models. Energy dissipation. http://id.loc.gov/authorities/subjects/sh90000752 Transitions de phase. Transitions de phase Modèles mathématiques. Dissipation d'énergie. SCIENCE Physics General. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Energy. bisacsh Energy dissipation fast Phase transformations (Statistical physics) fast Phase transformations (Statistical physics) Mathematical models fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85100646 http://id.loc.gov/authorities/subjects/sh90000752 |
title | Dissipative phase transitions / |
title_auth | Dissipative phase transitions / |
title_exact_search | Dissipative phase transitions / |
title_full | Dissipative phase transitions / editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels. |
title_fullStr | Dissipative phase transitions / editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels. |
title_full_unstemmed | Dissipative phase transitions / editors, Pierluigi Colli, Nobuyuki Kenmochi, Jürgen Sprekels. |
title_short | Dissipative phase transitions / |
title_sort | dissipative phase transitions |
topic | Phase transformations (Statistical physics) http://id.loc.gov/authorities/subjects/sh85100646 Phase transformations (Statistical physics) Mathematical models. Energy dissipation. http://id.loc.gov/authorities/subjects/sh90000752 Transitions de phase. Transitions de phase Modèles mathématiques. Dissipation d'énergie. SCIENCE Physics General. bisacsh SCIENCE Mechanics General. bisacsh SCIENCE Energy. bisacsh Energy dissipation fast Phase transformations (Statistical physics) fast Phase transformations (Statistical physics) Mathematical models fast |
topic_facet | Phase transformations (Statistical physics) Phase transformations (Statistical physics) Mathematical models. Energy dissipation. Transitions de phase. Transitions de phase Modèles mathématiques. Dissipation d'énergie. SCIENCE Physics General. SCIENCE Mechanics General. SCIENCE Energy. Energy dissipation Phase transformations (Statistical physics) Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210571 |
work_keys_str_mv | AT collip dissipativephasetransitions AT kenmochinobuyuki dissipativephasetransitions AT sprekelsj dissipativephasetransitions |