Fork algebras in algebra :: logic and computer science /
Fork algebras are a formalism based on the relational calculus, with interesting algebraic and metalogical properties. Their representability is especially appealing in computer science, since it allows a closer relationship between their language and models. This book gives a careful account of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
2002.
|
Schriftenreihe: | Advances in logic ;
v. 2. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Fork algebras are a formalism based on the relational calculus, with interesting algebraic and metalogical properties. Their representability is especially appealing in computer science, since it allows a closer relationship between their language and models. This book gives a careful account of the results and presents some applications of Fork algebras in computer science, particularly in system specification and program construction. Many applications of Fork algebras in formal methods can be applied in many ways, and the book covers all the essentials in order to provide the reader with a better understanding. |
Beschreibung: | 1 online resource (xi, 217 pages) |
Bibliographie: | Includes bibliographical references (pages 207-213) and index. |
ISBN: | 9789812777928 981277792X 9789810248765 9810248768 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn277199781 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 020328s2002 nju ob 001 0 eng d | ||
040 | |a CaPaEBR |b eng |e pn |c COCUF |d OCLCQ |d N$T |d YDXCP |d OCLCQ |d E7B |d OCLCQ |d DKDLA |d OCLCQ |d OCLCF |d OCLCO |d OCLCQ |d AZK |d JBG |d COCUF |d AGLDB |d MOR |d CCO |d PIFBR |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d CRU |d OCLCQ |d INT |d VT2 |d OCLCQ |d TKN |d OCLCQ |d AU@ |d M8D |d UKAHL |d CEF |d ADU |d UKCRE |d DGN |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 181651968 |a 474661194 |a 474713200 |a 647683585 |a 888835047 |a 961617279 |a 962686730 |a 1100832362 |a 1112808991 |a 1153543268 |a 1191626313 | ||
020 | |a 9789812777928 |q (electronic bk.) | ||
020 | |a 981277792X |q (electronic bk.) | ||
020 | |a 9789810248765 |q (alk. paper) | ||
020 | |a 9810248768 |q (alk. paper) | ||
020 | |z 9810248768 |q (alk. paper) | ||
035 | |a (OCoLC)277199781 |z (OCoLC)181651968 |z (OCoLC)474661194 |z (OCoLC)474713200 |z (OCoLC)647683585 |z (OCoLC)888835047 |z (OCoLC)961617279 |z (OCoLC)962686730 |z (OCoLC)1100832362 |z (OCoLC)1112808991 |z (OCoLC)1153543268 |z (OCoLC)1191626313 | ||
037 | |n Title subscribed to via ProQuest Academic Complete | ||
050 | 4 | |a QA76.9.M35 |b F75 2002eb | |
072 | 7 | |a COM |x 052000 |2 bisacsh | |
072 | 7 | |a COM |x 037000 |2 bisacsh | |
072 | 7 | |a COM |x 013000 |2 bisacsh | |
072 | 7 | |a COM |x 032000 |2 bisacsh | |
072 | 7 | |a COM |x 018000 |2 bisacsh | |
072 | 7 | |a COM |x 014000 |2 bisacsh | |
072 | 7 | |a COM |x 067000 |2 bisacsh | |
082 | 7 | |a 004/.01/51 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Frias, Marcelo Fabián, |d 1968- |1 https://id.oclc.org/worldcat/entity/E39PCjGRP3y8XgHXRHxVKBmPgq |0 http://id.loc.gov/authorities/names/n2002011651 | |
245 | 1 | 0 | |a Fork algebras in algebra : |b logic and computer science / |c Marcelo Fabián Frias. |
260 | |a River Edge, NJ : |b World Scientific, |c 2002. | ||
300 | |a 1 online resource (xi, 217 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Advances in logic ; |v v. 2 | |
504 | |a Includes bibliographical references (pages 207-213) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Introduction and motivations. 1.1. Software specification, binary relations and fork -- ch. 2. Algebras of binary relations and relation algebras. 2.1. History and definitions. 2.2. Arithmetical properties -- ch. 3. Proper and abstract fork algebras. 3.1. On the origin of fork algebras. 3.2. Definition of the classes. 3.3. Arithmetical properties -- ch. 4. Representability and independence. 4.1. Representability of abstract fork algebras. 4.2. Independence of the axiomatization of fork -- ch. 5. Interpretability of classical first-order logic. 5.1. Basic definitions. 5.2. Interpreting FOLE -- ch. 6. Algebraization of non-classical logics. 6.1. Basic definitions and properties. 6.2. The fork logic FL. 6.3. Modal logics. 6.4. Representation of constraints in FL. 6.5. Interpretability of modal logics in FL. 6.6. A proof theoretical approach. 6.7. Interpretability of propositional dynamic logic in FL. 6.8. The fork logic FL'. 6.9. A Rasiowa-Sikorski calculus for FL'. 6.10. A relational proof system for intuitionistic logic. 6.11. A relational proof system for minimal intuitionistic logic. 6.12. Relational reasoning in intermediate logics -- ch. 7. A calculus for program construction. 7.1. Introduction. 7.2. Filters and sets. 7.3. The relational implication. 7.4. Representability and expressiveness in program construction. 7.5. A methodology for program construction. 7.6. Examples. 7.7. A D & C algorithm for MAXSTA. 7.8. Comparison with previous work. | |
520 | |a Fork algebras are a formalism based on the relational calculus, with interesting algebraic and metalogical properties. Their representability is especially appealing in computer science, since it allows a closer relationship between their language and models. This book gives a careful account of the results and presents some applications of Fork algebras in computer science, particularly in system specification and program construction. Many applications of Fork algebras in formal methods can be applied in many ways, and the book covers all the essentials in order to provide the reader with a better understanding. | ||
650 | 0 | |a Computer science |x Mathematics. |0 http://id.loc.gov/authorities/subjects/sh85042295 | |
650 | 0 | |a Logic, Symbolic and mathematical. |0 http://id.loc.gov/authorities/subjects/sh85078115 | |
650 | 6 | |a Informatique |x Mathématiques. | |
650 | 6 | |a Logique symbolique et mathématique. | |
650 | 7 | |a COMPUTERS |x Reference. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Machine Theory. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Computer Literacy. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Information Technology. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Data Processing. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Computer Science. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Hardware |x General. |2 bisacsh | |
650 | 7 | |a Computer science |x Mathematics |2 fast | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
776 | 0 | 8 | |i Print version: |a Frias, Marcelo Fabián, 1968- |t Folk algebras in algebra. |d River Edge, NJ : World Scientific, ©2002 |z 9810248768 |z 9789810248765 |w (DLC) 2002066193 |w (OCoLC)49558950 |
830 | 0 | |a Advances in logic ; |v v. 2. |0 http://id.loc.gov/authorities/names/n2001114820 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210586 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684771 | ||
938 | |a EBSCOhost |b EBSC |n 210586 | ||
938 | |a YBP Library Services |b YANK |n 2736175 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn277199781 |
---|---|
_version_ | 1816881680904880128 |
adam_text | |
any_adam_object | |
author | Frias, Marcelo Fabián, 1968- |
author_GND | http://id.loc.gov/authorities/names/n2002011651 |
author_facet | Frias, Marcelo Fabián, 1968- |
author_role | |
author_sort | Frias, Marcelo Fabián, 1968- |
author_variant | m f f mf mff |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.M35 F75 2002eb |
callnumber-search | QA76.9.M35 F75 2002eb |
callnumber-sort | QA 276.9 M35 F75 42002EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Ch. 1. Introduction and motivations. 1.1. Software specification, binary relations and fork -- ch. 2. Algebras of binary relations and relation algebras. 2.1. History and definitions. 2.2. Arithmetical properties -- ch. 3. Proper and abstract fork algebras. 3.1. On the origin of fork algebras. 3.2. Definition of the classes. 3.3. Arithmetical properties -- ch. 4. Representability and independence. 4.1. Representability of abstract fork algebras. 4.2. Independence of the axiomatization of fork -- ch. 5. Interpretability of classical first-order logic. 5.1. Basic definitions. 5.2. Interpreting FOLE -- ch. 6. Algebraization of non-classical logics. 6.1. Basic definitions and properties. 6.2. The fork logic FL. 6.3. Modal logics. 6.4. Representation of constraints in FL. 6.5. Interpretability of modal logics in FL. 6.6. A proof theoretical approach. 6.7. Interpretability of propositional dynamic logic in FL. 6.8. The fork logic FL'. 6.9. A Rasiowa-Sikorski calculus for FL'. 6.10. A relational proof system for intuitionistic logic. 6.11. A relational proof system for minimal intuitionistic logic. 6.12. Relational reasoning in intermediate logics -- ch. 7. A calculus for program construction. 7.1. Introduction. 7.2. Filters and sets. 7.3. The relational implication. 7.4. Representability and expressiveness in program construction. 7.5. A methodology for program construction. 7.6. Examples. 7.7. A D & C algorithm for MAXSTA. 7.8. Comparison with previous work. |
ctrlnum | (OCoLC)277199781 |
dewey-full | 004/.01/51 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004/.01/51 |
dewey-search | 004/.01/51 |
dewey-sort | 14 11 251 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05706cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn277199781</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">020328s2002 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">CEF</subfield><subfield code="d">ADU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">DGN</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181651968</subfield><subfield code="a">474661194</subfield><subfield code="a">474713200</subfield><subfield code="a">647683585</subfield><subfield code="a">888835047</subfield><subfield code="a">961617279</subfield><subfield code="a">962686730</subfield><subfield code="a">1100832362</subfield><subfield code="a">1112808991</subfield><subfield code="a">1153543268</subfield><subfield code="a">1191626313</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812777928</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981277792X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810248765</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810248768</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810248768</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)277199781</subfield><subfield code="z">(OCoLC)181651968</subfield><subfield code="z">(OCoLC)474661194</subfield><subfield code="z">(OCoLC)474713200</subfield><subfield code="z">(OCoLC)647683585</subfield><subfield code="z">(OCoLC)888835047</subfield><subfield code="z">(OCoLC)961617279</subfield><subfield code="z">(OCoLC)962686730</subfield><subfield code="z">(OCoLC)1100832362</subfield><subfield code="z">(OCoLC)1112808991</subfield><subfield code="z">(OCoLC)1153543268</subfield><subfield code="z">(OCoLC)1191626313</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="n">Title subscribed to via ProQuest Academic Complete</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.M35</subfield><subfield code="b">F75 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">052000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">032000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">004/.01/51</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Frias, Marcelo Fabián,</subfield><subfield code="d">1968-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGRP3y8XgHXRHxVKBmPgq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002011651</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fork algebras in algebra :</subfield><subfield code="b">logic and computer science /</subfield><subfield code="c">Marcelo Fabián Frias.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 217 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in logic ;</subfield><subfield code="v">v. 2</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 207-213) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Introduction and motivations. 1.1. Software specification, binary relations and fork -- ch. 2. Algebras of binary relations and relation algebras. 2.1. History and definitions. 2.2. Arithmetical properties -- ch. 3. Proper and abstract fork algebras. 3.1. On the origin of fork algebras. 3.2. Definition of the classes. 3.3. Arithmetical properties -- ch. 4. Representability and independence. 4.1. Representability of abstract fork algebras. 4.2. Independence of the axiomatization of fork -- ch. 5. Interpretability of classical first-order logic. 5.1. Basic definitions. 5.2. Interpreting FOLE -- ch. 6. Algebraization of non-classical logics. 6.1. Basic definitions and properties. 6.2. The fork logic FL. 6.3. Modal logics. 6.4. Representation of constraints in FL. 6.5. Interpretability of modal logics in FL. 6.6. A proof theoretical approach. 6.7. Interpretability of propositional dynamic logic in FL. 6.8. The fork logic FL'. 6.9. A Rasiowa-Sikorski calculus for FL'. 6.10. A relational proof system for intuitionistic logic. 6.11. A relational proof system for minimal intuitionistic logic. 6.12. Relational reasoning in intermediate logics -- ch. 7. A calculus for program construction. 7.1. Introduction. 7.2. Filters and sets. 7.3. The relational implication. 7.4. Representability and expressiveness in program construction. 7.5. A methodology for program construction. 7.6. Examples. 7.7. A D & C algorithm for MAXSTA. 7.8. Comparison with previous work.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fork algebras are a formalism based on the relational calculus, with interesting algebraic and metalogical properties. Their representability is especially appealing in computer science, since it allows a closer relationship between their language and models. This book gives a careful account of the results and presents some applications of Fork algebras in computer science, particularly in system specification and program construction. Many applications of Fork algebras in formal methods can be applied in many ways, and the book covers all the essentials in order to provide the reader with a better understanding.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer science</subfield><subfield code="x">Mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042295</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078115</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Informatique</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Machine Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Literacy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Information Technology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Data Processing.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Hardware</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer science</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Frias, Marcelo Fabián, 1968-</subfield><subfield code="t">Folk algebras in algebra.</subfield><subfield code="d">River Edge, NJ : World Scientific, ©2002</subfield><subfield code="z">9810248768</subfield><subfield code="z">9789810248765</subfield><subfield code="w">(DLC) 2002066193</subfield><subfield code="w">(OCoLC)49558950</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in logic ;</subfield><subfield code="v">v. 2.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001114820</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210586</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684771</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210586</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736175</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn277199781 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:34Z |
institution | BVB |
isbn | 9789812777928 981277792X 9789810248765 9810248768 |
language | English |
oclc_num | 277199781 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 217 pages) |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
series | Advances in logic ; |
series2 | Advances in logic ; |
spelling | Frias, Marcelo Fabián, 1968- https://id.oclc.org/worldcat/entity/E39PCjGRP3y8XgHXRHxVKBmPgq http://id.loc.gov/authorities/names/n2002011651 Fork algebras in algebra : logic and computer science / Marcelo Fabián Frias. River Edge, NJ : World Scientific, 2002. 1 online resource (xi, 217 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Advances in logic ; v. 2 Includes bibliographical references (pages 207-213) and index. Print version record. Ch. 1. Introduction and motivations. 1.1. Software specification, binary relations and fork -- ch. 2. Algebras of binary relations and relation algebras. 2.1. History and definitions. 2.2. Arithmetical properties -- ch. 3. Proper and abstract fork algebras. 3.1. On the origin of fork algebras. 3.2. Definition of the classes. 3.3. Arithmetical properties -- ch. 4. Representability and independence. 4.1. Representability of abstract fork algebras. 4.2. Independence of the axiomatization of fork -- ch. 5. Interpretability of classical first-order logic. 5.1. Basic definitions. 5.2. Interpreting FOLE -- ch. 6. Algebraization of non-classical logics. 6.1. Basic definitions and properties. 6.2. The fork logic FL. 6.3. Modal logics. 6.4. Representation of constraints in FL. 6.5. Interpretability of modal logics in FL. 6.6. A proof theoretical approach. 6.7. Interpretability of propositional dynamic logic in FL. 6.8. The fork logic FL'. 6.9. A Rasiowa-Sikorski calculus for FL'. 6.10. A relational proof system for intuitionistic logic. 6.11. A relational proof system for minimal intuitionistic logic. 6.12. Relational reasoning in intermediate logics -- ch. 7. A calculus for program construction. 7.1. Introduction. 7.2. Filters and sets. 7.3. The relational implication. 7.4. Representability and expressiveness in program construction. 7.5. A methodology for program construction. 7.6. Examples. 7.7. A D & C algorithm for MAXSTA. 7.8. Comparison with previous work. Fork algebras are a formalism based on the relational calculus, with interesting algebraic and metalogical properties. Their representability is especially appealing in computer science, since it allows a closer relationship between their language and models. This book gives a careful account of the results and presents some applications of Fork algebras in computer science, particularly in system specification and program construction. Many applications of Fork algebras in formal methods can be applied in many ways, and the book covers all the essentials in order to provide the reader with a better understanding. Computer science Mathematics. http://id.loc.gov/authorities/subjects/sh85042295 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Informatique Mathématiques. Logique symbolique et mathématique. COMPUTERS Reference. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Computer Literacy. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Hardware General. bisacsh Computer science Mathematics fast Logic, Symbolic and mathematical fast Print version: Frias, Marcelo Fabián, 1968- Folk algebras in algebra. River Edge, NJ : World Scientific, ©2002 9810248768 9789810248765 (DLC) 2002066193 (OCoLC)49558950 Advances in logic ; v. 2. http://id.loc.gov/authorities/names/n2001114820 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210586 Volltext |
spellingShingle | Frias, Marcelo Fabián, 1968- Fork algebras in algebra : logic and computer science / Advances in logic ; Ch. 1. Introduction and motivations. 1.1. Software specification, binary relations and fork -- ch. 2. Algebras of binary relations and relation algebras. 2.1. History and definitions. 2.2. Arithmetical properties -- ch. 3. Proper and abstract fork algebras. 3.1. On the origin of fork algebras. 3.2. Definition of the classes. 3.3. Arithmetical properties -- ch. 4. Representability and independence. 4.1. Representability of abstract fork algebras. 4.2. Independence of the axiomatization of fork -- ch. 5. Interpretability of classical first-order logic. 5.1. Basic definitions. 5.2. Interpreting FOLE -- ch. 6. Algebraization of non-classical logics. 6.1. Basic definitions and properties. 6.2. The fork logic FL. 6.3. Modal logics. 6.4. Representation of constraints in FL. 6.5. Interpretability of modal logics in FL. 6.6. A proof theoretical approach. 6.7. Interpretability of propositional dynamic logic in FL. 6.8. The fork logic FL'. 6.9. A Rasiowa-Sikorski calculus for FL'. 6.10. A relational proof system for intuitionistic logic. 6.11. A relational proof system for minimal intuitionistic logic. 6.12. Relational reasoning in intermediate logics -- ch. 7. A calculus for program construction. 7.1. Introduction. 7.2. Filters and sets. 7.3. The relational implication. 7.4. Representability and expressiveness in program construction. 7.5. A methodology for program construction. 7.6. Examples. 7.7. A D & C algorithm for MAXSTA. 7.8. Comparison with previous work. Computer science Mathematics. http://id.loc.gov/authorities/subjects/sh85042295 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Informatique Mathématiques. Logique symbolique et mathématique. COMPUTERS Reference. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Computer Literacy. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Hardware General. bisacsh Computer science Mathematics fast Logic, Symbolic and mathematical fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85042295 http://id.loc.gov/authorities/subjects/sh85078115 |
title | Fork algebras in algebra : logic and computer science / |
title_auth | Fork algebras in algebra : logic and computer science / |
title_exact_search | Fork algebras in algebra : logic and computer science / |
title_full | Fork algebras in algebra : logic and computer science / Marcelo Fabián Frias. |
title_fullStr | Fork algebras in algebra : logic and computer science / Marcelo Fabián Frias. |
title_full_unstemmed | Fork algebras in algebra : logic and computer science / Marcelo Fabián Frias. |
title_short | Fork algebras in algebra : |
title_sort | fork algebras in algebra logic and computer science |
title_sub | logic and computer science / |
topic | Computer science Mathematics. http://id.loc.gov/authorities/subjects/sh85042295 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Informatique Mathématiques. Logique symbolique et mathématique. COMPUTERS Reference. bisacsh COMPUTERS Machine Theory. bisacsh COMPUTERS Computer Literacy. bisacsh COMPUTERS Information Technology. bisacsh COMPUTERS Data Processing. bisacsh COMPUTERS Computer Science. bisacsh COMPUTERS Hardware General. bisacsh Computer science Mathematics fast Logic, Symbolic and mathematical fast |
topic_facet | Computer science Mathematics. Logic, Symbolic and mathematical. Informatique Mathématiques. Logique symbolique et mathématique. COMPUTERS Reference. COMPUTERS Machine Theory. COMPUTERS Computer Literacy. COMPUTERS Information Technology. COMPUTERS Data Processing. COMPUTERS Computer Science. COMPUTERS Hardware General. Computer science Mathematics Logic, Symbolic and mathematical |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210586 |
work_keys_str_mv | AT friasmarcelofabian forkalgebrasinalgebralogicandcomputerscience |