Analysis on Lie groups :: an introduction /
The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2008.
|
Schriftenreihe: | Cambridge studies in advanced mathematics ;
110. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups. |
Beschreibung: | 1 online resource (x, 302 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 299-300) and index. |
ISBN: | 0511423500 9780511423505 9780511421105 0511421109 9780511423987 0511423985 9780511755170 0511755171 1107173981 9781107173989 1281775533 9781281775535 9786611775537 6611775536 0511421648 9780511421648 0511422962 9780511422966 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn270110558 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr zn||||||||| | ||
008 | 080808s2008 enka ob 001 0 eng d | ||
040 | |a CDX |b eng |e pn |c CDX |d OCLCQ |d TEFOD |d N$T |d IDEBK |d E7B |d OCLCQ |d CHC |d OCLCQ |d REDDC |d OCLCQ |d OCLCF |d OCLCO |d YDXCP |d HUH |d OCLCQ |d TEFOD |d OCLCQ |d LOA |d AZK |d OCLCQ |d COCUF |d MOR |d PIFAG |d OTZ |d OCLCQ |d UAB |d STF |d WRM |d OCLCQ |d VT2 |d OCLCQ |d OL$ |d UIU |d UKCRE |d UKAHL |d LUN |d OCLCQ |d OCLCO |d CN6UV |d TUHNV |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB | ||
015 | |a GBA825124 |2 bnb | ||
016 | 7 | |z 014536951 |2 Uk | |
019 | |a 276480262 |a 289118273 |a 646761683 |a 663425585 |a 706495235 |a 960200846 |a 961595624 |a 962700516 |a 988483979 |a 991965384 |a 994954083 |a 1035664471 |a 1037687407 |a 1038564880 |a 1055334797 |a 1153542019 |a 1170334968 |a 1172993053 |a 1228564161 |a 1243592276 |a 1259199103 | ||
020 | |a 0511423500 |q (electronic bk.) | ||
020 | |a 9780511423505 |q (electronic bk.) | ||
020 | |a 9780511421105 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 0511421109 |q (electronic bk. ; |q Adobe Reader) | ||
020 | |a 9780511423987 |q (electronic bk.) | ||
020 | |a 0511423985 |q (electronic bk.) | ||
020 | |a 9780511755170 | ||
020 | |a 0511755171 | ||
020 | |a 1107173981 | ||
020 | |a 9781107173989 | ||
020 | |a 1281775533 | ||
020 | |a 9781281775535 | ||
020 | |a 9786611775537 | ||
020 | |a 6611775536 | ||
020 | |a 0511421648 | ||
020 | |a 9780511421648 | ||
020 | |a 0511422962 | ||
020 | |a 9780511422966 | ||
020 | |z 0521719305 |q (Cloth) | ||
020 | |z 9780521719308 |q (hbk.) | ||
024 | 8 | |a 9786611775537 | |
035 | |a (OCoLC)270110558 |z (OCoLC)276480262 |z (OCoLC)289118273 |z (OCoLC)646761683 |z (OCoLC)663425585 |z (OCoLC)706495235 |z (OCoLC)960200846 |z (OCoLC)961595624 |z (OCoLC)962700516 |z (OCoLC)988483979 |z (OCoLC)991965384 |z (OCoLC)994954083 |z (OCoLC)1035664471 |z (OCoLC)1037687407 |z (OCoLC)1038564880 |z (OCoLC)1055334797 |z (OCoLC)1153542019 |z (OCoLC)1170334968 |z (OCoLC)1172993053 |z (OCoLC)1228564161 |z (OCoLC)1243592276 |z (OCoLC)1259199103 | ||
037 | |b OverDrive, Inc. |n http://www.overdrive.com | ||
037 | |a 299BBB26-8F56-48BE-B133-69298352E26D |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA387 |b .F37 2008eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.482 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Faraut, Jacques, |d 1940- |1 https://id.oclc.org/worldcat/entity/E39PBJbGRtDGgDcw7qY74gKjmd |0 http://id.loc.gov/authorities/names/n87818292 | |
245 | 1 | 0 | |a Analysis on Lie groups : |b an introduction / |c Jacques Faraut. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2008. | ||
300 | |a 1 online resource (x, 302 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Cambridge studies in advanced mathematics ; |v 110 | |
504 | |a Includes bibliographical references (pages 299-300) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a The linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group. | |
520 | |a The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups. | ||
546 | |a English. | ||
650 | 0 | |a Lie groups. |0 http://id.loc.gov/authorities/subjects/sh85076786 | |
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 6 | |a Groupes de Lie. | |
650 | 6 | |a Algèbres de Lie. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
758 | |i has work: |a Analysis on Lie groups (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGkCgfJ9YqCgj44GtKRqPP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Faraut, Jacques, 1940- |t Analysis on Lie groups. |d Cambridge, UK ; New York : Cambridge University Press, 2008 |w (DLC) 2007053046 |
830 | 0 | |a Cambridge studies in advanced mathematics ; |v 110. |0 http://id.loc.gov/authorities/names/n84708314 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=244494 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH13431593 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH37559757 | ||
938 | |a Coutts Information Services |b COUT |n 8981798 | ||
938 | |a EBSCOhost |b EBSC |n 244494 | ||
938 | |a YBP Library Services |b YANK |n 2927993 | ||
938 | |a YBP Library Services |b YANK |n 2892770 | ||
938 | |a YBP Library Services |b YANK |n 3583801 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn270110558 |
---|---|
_version_ | 1816881679884615681 |
adam_text | |
any_adam_object | |
author | Faraut, Jacques, 1940- |
author_GND | http://id.loc.gov/authorities/names/n87818292 |
author_facet | Faraut, Jacques, 1940- |
author_role | |
author_sort | Faraut, Jacques, 1940- |
author_variant | j f jf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 .F37 2008eb |
callnumber-search | QA387 .F37 2008eb |
callnumber-sort | QA 3387 F37 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | The linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group. |
ctrlnum | (OCoLC)270110558 |
dewey-full | 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.482 |
dewey-search | 512/.482 |
dewey-sort | 3512 3482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05928cam a2200913 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn270110558</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr zn|||||||||</controlfield><controlfield tag="008">080808s2008 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEFOD</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CHC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">HUH</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AZK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">UIU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">UKAHL</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CN6UV</subfield><subfield code="d">TUHNV</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA825124</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">014536951</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">276480262</subfield><subfield code="a">289118273</subfield><subfield code="a">646761683</subfield><subfield code="a">663425585</subfield><subfield code="a">706495235</subfield><subfield code="a">960200846</subfield><subfield code="a">961595624</subfield><subfield code="a">962700516</subfield><subfield code="a">988483979</subfield><subfield code="a">991965384</subfield><subfield code="a">994954083</subfield><subfield code="a">1035664471</subfield><subfield code="a">1037687407</subfield><subfield code="a">1038564880</subfield><subfield code="a">1055334797</subfield><subfield code="a">1153542019</subfield><subfield code="a">1170334968</subfield><subfield code="a">1172993053</subfield><subfield code="a">1228564161</subfield><subfield code="a">1243592276</subfield><subfield code="a">1259199103</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511423500</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511423505</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511421105</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511421109</subfield><subfield code="q">(electronic bk. ;</subfield><subfield code="q">Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511423987</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511423985</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511755170</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511755171</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107173981</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107173989</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281775533</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281775535</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611775537</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611775536</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511421648</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511421648</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511422962</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511422966</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521719305</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521719308</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786611775537</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)270110558</subfield><subfield code="z">(OCoLC)276480262</subfield><subfield code="z">(OCoLC)289118273</subfield><subfield code="z">(OCoLC)646761683</subfield><subfield code="z">(OCoLC)663425585</subfield><subfield code="z">(OCoLC)706495235</subfield><subfield code="z">(OCoLC)960200846</subfield><subfield code="z">(OCoLC)961595624</subfield><subfield code="z">(OCoLC)962700516</subfield><subfield code="z">(OCoLC)988483979</subfield><subfield code="z">(OCoLC)991965384</subfield><subfield code="z">(OCoLC)994954083</subfield><subfield code="z">(OCoLC)1035664471</subfield><subfield code="z">(OCoLC)1037687407</subfield><subfield code="z">(OCoLC)1038564880</subfield><subfield code="z">(OCoLC)1055334797</subfield><subfield code="z">(OCoLC)1153542019</subfield><subfield code="z">(OCoLC)1170334968</subfield><subfield code="z">(OCoLC)1172993053</subfield><subfield code="z">(OCoLC)1228564161</subfield><subfield code="z">(OCoLC)1243592276</subfield><subfield code="z">(OCoLC)1259199103</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">299BBB26-8F56-48BE-B133-69298352E26D</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA387</subfield><subfield code="b">.F37 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faraut, Jacques,</subfield><subfield code="d">1940-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbGRtDGgDcw7qY74gKjmd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87818292</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis on Lie groups :</subfield><subfield code="b">an introduction /</subfield><subfield code="c">Jacques Faraut.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 302 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">110</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 299-300) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">The linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076786</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Analysis on Lie groups (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGkCgfJ9YqCgj44GtKRqPP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Faraut, Jacques, 1940-</subfield><subfield code="t">Analysis on Lie groups.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2008</subfield><subfield code="w">(DLC) 2007053046</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">110.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84708314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=244494</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13431593</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37559757</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">8981798</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">244494</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2927993</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2892770</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3583801</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn270110558 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 0511423500 9780511423505 9780511421105 0511421109 9780511423987 0511423985 9780511755170 0511755171 1107173981 9781107173989 1281775533 9781281775535 9786611775537 6611775536 0511421648 9780511421648 0511422962 9780511422966 |
language | English |
oclc_num | 270110558 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 302 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge studies in advanced mathematics ; |
series2 | Cambridge studies in advanced mathematics ; |
spelling | Faraut, Jacques, 1940- https://id.oclc.org/worldcat/entity/E39PBJbGRtDGgDcw7qY74gKjmd http://id.loc.gov/authorities/names/n87818292 Analysis on Lie groups : an introduction / Jacques Faraut. Cambridge, UK ; New York : Cambridge University Press, 2008. 1 online resource (x, 302 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Cambridge studies in advanced mathematics ; 110 Includes bibliographical references (pages 299-300) and index. Print version record. The linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group. The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups. English. Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Groupes de Lie. Algèbres de Lie. MATHEMATICS Algebra Intermediate. bisacsh Lie algebras fast Lie groups fast Electronic books. has work: Analysis on Lie groups (Text) https://id.oclc.org/worldcat/entity/E39PCGkCgfJ9YqCgj44GtKRqPP https://id.oclc.org/worldcat/ontology/hasWork Print version: Faraut, Jacques, 1940- Analysis on Lie groups. Cambridge, UK ; New York : Cambridge University Press, 2008 (DLC) 2007053046 Cambridge studies in advanced mathematics ; 110. http://id.loc.gov/authorities/names/n84708314 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=244494 Volltext |
spellingShingle | Faraut, Jacques, 1940- Analysis on Lie groups : an introduction / Cambridge studies in advanced mathematics ; The linear group -- The exponential map -- Linear Lie groups -- Lie algebras -- Haar measure -- Representations of compact groups -- The groups SU(2) and SO(3), Haar measure -- Analysis on the group SU(2) -- Analysis on the sphere and the Euclidean space -- Analysis on the spaces of symmetric and Hermitian matrices -- Irreducible representations of the unitary group -- Analysis on the unitary group. Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Groupes de Lie. Algèbres de Lie. MATHEMATICS Algebra Intermediate. bisacsh Lie algebras fast Lie groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076786 http://id.loc.gov/authorities/subjects/sh85076782 |
title | Analysis on Lie groups : an introduction / |
title_auth | Analysis on Lie groups : an introduction / |
title_exact_search | Analysis on Lie groups : an introduction / |
title_full | Analysis on Lie groups : an introduction / Jacques Faraut. |
title_fullStr | Analysis on Lie groups : an introduction / Jacques Faraut. |
title_full_unstemmed | Analysis on Lie groups : an introduction / Jacques Faraut. |
title_short | Analysis on Lie groups : |
title_sort | analysis on lie groups an introduction |
title_sub | an introduction / |
topic | Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Groupes de Lie. Algèbres de Lie. MATHEMATICS Algebra Intermediate. bisacsh Lie algebras fast Lie groups fast |
topic_facet | Lie groups. Lie algebras. Groupes de Lie. Algèbres de Lie. MATHEMATICS Algebra Intermediate. Lie algebras Lie groups Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=244494 |
work_keys_str_mv | AT farautjacques analysisonliegroupsanintroduction |