Differential neural networks for robust nonlinear control :: identification, state estimation and trajectory tracking /
This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
©2001.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical). |
Beschreibung: | 1 online resource (xxxi, 422 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789812811295 981281129X 9810246242 9789810246242 1281956732 9781281956736 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn269460849 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081107s2001 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d N$T |d YDXCP |d N$T |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d NLGGC |d OCLCQ |d COCUF |d AGLDB |d MOR |d CCO |d ZCU |d JBG |d OCLCQ |d VTS |d VT2 |d AU@ |d OCLCQ |d STF |d M8D |d UKAHL |d OCLCA |d WYU |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1063868260 | ||
020 | |a 9789812811295 |q (electronic bk.) | ||
020 | |a 981281129X |q (electronic bk.) | ||
020 | |a 9810246242 | ||
020 | |a 9789810246242 | ||
020 | |a 1281956732 | ||
020 | |a 9781281956736 | ||
024 | 3 | |a 9789810246242 | |
035 | |a (OCoLC)269460849 |z (OCoLC)1063868260 | ||
037 | |b 00041155 | ||
050 | 4 | |a QA76.87 |b .P69 2001eb | |
072 | 7 | |a TEC |x 004000 |2 bisacsh | |
072 | 7 | |a UYQN |2 bicssc | |
082 | 7 | |a 629.89 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Poznyak, Alexander S. |0 http://id.loc.gov/authorities/names/n94048975 | |
245 | 1 | 0 | |a Differential neural networks for robust nonlinear control : |b identification, state estimation and trajectory tracking / |c Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu. |
260 | |a River Edge, NJ : |b World Scientific, |c ©2001. | ||
300 | |a 1 online resource (xxxi, 422 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical). | ||
505 | 0 | |a 0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model. | |
505 | 8 | |a 1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control. | |
505 | 8 | |a 1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers. | |
505 | 8 | |a 2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case. | |
505 | 8 | |a 2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks. | |
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 0 | |a Nonlinear control theory. |0 http://id.loc.gov/authorities/subjects/sh90000979 | |
650 | 0 | |a Robust control. |0 http://id.loc.gov/authorities/subjects/sh99013330 | |
650 | 2 | |a Neural Networks, Computer |0 https://id.nlm.nih.gov/mesh/D016571 | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 6 | |a Commande non linéaire. | |
650 | 6 | |a Commande robuste. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Automation. |2 bisacsh | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Nonlinear control theory |2 fast | |
650 | 7 | |a Robust control |2 fast | |
700 | 1 | |a Sanchez, Edgar N. |0 http://id.loc.gov/authorities/names/no2002009402 | |
700 | 1 | |a Yu, Wen |c (Robotics engineer) |1 https://id.oclc.org/worldcat/entity/E39PCjB446T37xWG8pWTPFTHvd | |
758 | |i has work: |a Differential neural networks for robust nonlinear control (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGBCK6wBbFHGpff8FXgJwy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Poznyak, Alexander S. |t Differential neural networks for robust nonlinear control. |d River Edge, NJ : World Scientific, ©2001 |z 9789810246242 |w (DLC) 2002275143 |w (OCoLC)50291236 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235826 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685609 | ||
938 | |a EBSCOhost |b EBSC |n 235826 | ||
938 | |a YBP Library Services |b YANK |n 2907176 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn269460849 |
---|---|
_version_ | 1816881679764029440 |
adam_text | |
any_adam_object | |
author | Poznyak, Alexander S. |
author2 | Sanchez, Edgar N. Yu, Wen (Robotics engineer) |
author2_role | |
author2_variant | e n s en ens w y wy |
author_GND | http://id.loc.gov/authorities/names/n94048975 http://id.loc.gov/authorities/names/no2002009402 |
author_facet | Poznyak, Alexander S. Sanchez, Edgar N. Yu, Wen (Robotics engineer) |
author_role | |
author_sort | Poznyak, Alexander S. |
author_variant | a s p as asp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 .P69 2001eb |
callnumber-search | QA76.87 .P69 2001eb |
callnumber-sort | QA 276.87 P69 42001EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model. 1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control. 1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers. 2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case. 2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks. |
ctrlnum | (OCoLC)269460849 |
dewey-full | 629.89 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.89 |
dewey-search | 629.89 |
dewey-sort | 3629.89 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05138cam a2200721 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn269460849</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081107s2001 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">ZCU</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCA</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1063868260</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812811295</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981281129X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810246242</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810246242</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281956732</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281956736</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789810246242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)269460849</subfield><subfield code="z">(OCoLC)1063868260</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">00041155</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.87</subfield><subfield code="b">.P69 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">629.89</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poznyak, Alexander S.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94048975</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential neural networks for robust nonlinear control :</subfield><subfield code="b">identification, state estimation and trajectory tracking /</subfield><subfield code="c">Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxi, 422 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear control theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90000979</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Robust control.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99013330</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D016571</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Commande non linéaire.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Commande robuste.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Automation.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robust control</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanchez, Edgar N.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2002009402</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Wen</subfield><subfield code="c">(Robotics engineer)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjB446T37xWG8pWTPFTHvd</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Differential neural networks for robust nonlinear control (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGBCK6wBbFHGpff8FXgJwy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Poznyak, Alexander S.</subfield><subfield code="t">Differential neural networks for robust nonlinear control.</subfield><subfield code="d">River Edge, NJ : World Scientific, ©2001</subfield><subfield code="z">9789810246242</subfield><subfield code="w">(DLC) 2002275143</subfield><subfield code="w">(OCoLC)50291236</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235826</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685609</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235826</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2907176</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn269460849 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812811295 981281129X 9810246242 9789810246242 1281956732 9781281956736 |
language | English |
oclc_num | 269460849 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxi, 422 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific, |
record_format | marc |
spelling | Poznyak, Alexander S. http://id.loc.gov/authorities/names/n94048975 Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu. River Edge, NJ : World Scientific, ©2001. 1 online resource (xxxi, 422 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references and index. Print version record. This volume deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical). 0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model. 1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control. 1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers. 2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case. 2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Nonlinear control theory. http://id.loc.gov/authorities/subjects/sh90000979 Robust control. http://id.loc.gov/authorities/subjects/sh99013330 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Réseaux neuronaux (Informatique) Commande non linéaire. Commande robuste. TECHNOLOGY & ENGINEERING Automation. bisacsh Neural networks (Computer science) fast Nonlinear control theory fast Robust control fast Sanchez, Edgar N. http://id.loc.gov/authorities/names/no2002009402 Yu, Wen (Robotics engineer) https://id.oclc.org/worldcat/entity/E39PCjB446T37xWG8pWTPFTHvd has work: Differential neural networks for robust nonlinear control (Text) https://id.oclc.org/worldcat/entity/E39PCGBCK6wBbFHGpff8FXgJwy https://id.oclc.org/worldcat/ontology/hasWork Print version: Poznyak, Alexander S. Differential neural networks for robust nonlinear control. River Edge, NJ : World Scientific, ©2001 9789810246242 (DLC) 2002275143 (OCoLC)50291236 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235826 Volltext |
spellingShingle | Poznyak, Alexander S. Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / 0.1 Abstract ; 0.2 Preface ; 0.3 Acknowledgments ; 0.4 Introduction ; 0.4.1 Guide for the Readers ; 0.5 Notations ; I Theoretical Study ; 1 Neural Networks Structures ; 1.1 Introduction ; 1.2 Biological Neural Networks ; 1.3 Neuron Model. 1.4 Neural Networks Structures 1.4.1 Single-Layer Feedforward Networks ; 1.4.2 Multilayer Feedforward Neural Networks ; 1.4.3 Radial Basis Function Neural Networks ; 1.4.4 Recurrent Neural Networks ; 1.4.5 Differential Neural Networks ; 1.5 Neural Networks in Control. 1.5.1 Identification 1.5.2 Control ; 1.6 Conclusions ; 1.7 References ; 2 Nonlinear System Identification: Differential Learning ; 2.1 Introduction ; 2.2 Identification Error Stability Analysis for Simplest Differential Neural Networks without Hidden Layers. 2.2.1 Nonlinear System and Differential Neural Network Model 2.2.2 Exact Neural Network Matching with Known Linear Part ; 2.2.3 Non-exact Neural Networks Modelling: Bounded Unmodelled Dynamics Case. 2.2.4 Estimation of Maximum Value of Identification Error for Nonlinear Systems with Bounded Unmodelled Dynamics 2.3 Multilayer Differential Neural Networks for Nonlinear System On-line Identification ; 2.3.1 Multilayer Structure of Differential Neural Networks. Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Nonlinear control theory. http://id.loc.gov/authorities/subjects/sh90000979 Robust control. http://id.loc.gov/authorities/subjects/sh99013330 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Réseaux neuronaux (Informatique) Commande non linéaire. Commande robuste. TECHNOLOGY & ENGINEERING Automation. bisacsh Neural networks (Computer science) fast Nonlinear control theory fast Robust control fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh90001937 http://id.loc.gov/authorities/subjects/sh90000979 http://id.loc.gov/authorities/subjects/sh99013330 https://id.nlm.nih.gov/mesh/D016571 |
title | Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / |
title_auth | Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / |
title_exact_search | Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / |
title_full | Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu. |
title_fullStr | Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu. |
title_full_unstemmed | Differential neural networks for robust nonlinear control : identification, state estimation and trajectory tracking / Alexander S. Poznyak, Edgar N. Sanchez, Wen Yu. |
title_short | Differential neural networks for robust nonlinear control : |
title_sort | differential neural networks for robust nonlinear control identification state estimation and trajectory tracking |
title_sub | identification, state estimation and trajectory tracking / |
topic | Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Nonlinear control theory. http://id.loc.gov/authorities/subjects/sh90000979 Robust control. http://id.loc.gov/authorities/subjects/sh99013330 Neural Networks, Computer https://id.nlm.nih.gov/mesh/D016571 Réseaux neuronaux (Informatique) Commande non linéaire. Commande robuste. TECHNOLOGY & ENGINEERING Automation. bisacsh Neural networks (Computer science) fast Nonlinear control theory fast Robust control fast |
topic_facet | Neural networks (Computer science) Nonlinear control theory. Robust control. Neural Networks, Computer Réseaux neuronaux (Informatique) Commande non linéaire. Commande robuste. TECHNOLOGY & ENGINEERING Automation. Nonlinear control theory Robust control |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235826 |
work_keys_str_mv | AT poznyakalexanders differentialneuralnetworksforrobustnonlinearcontrolidentificationstateestimationandtrajectorytracking AT sanchezedgarn differentialneuralnetworksforrobustnonlinearcontrolidentificationstateestimationandtrajectorytracking AT yuwen differentialneuralnetworksforrobustnonlinearcontrolidentificationstateestimationandtrajectorytracking |