Dynamics and mission design near libration points.: the case of triangular libration points / Vol. 2, Fundamentals :
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, NJ :
World Scientific,
2001.
|
Schriftenreihe: | World Scientific monograph series in mathematics ;
v. 3. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (1 volume) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789812810649 9812810641 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn268988481 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081105s2001 si a ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d NLGGC |d OCLCO |d STF |d OCLCQ |d VTS |d AGLDB |d UKAHL |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
020 | |a 9789812810649 |q (electronic bk.) | ||
020 | |a 9812810641 |q (electronic bk.) | ||
035 | |a (OCoLC)268988481 | ||
050 | 4 | |a QB362.T5 |b D96eb vol. 2 | |
072 | 7 | |a SCI |x 004000 |2 bisacsh | |
082 | 7 | |a 521/.3 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Dynamics and mission design near libration points. |n Vol. 2, |p Fundamentals : |b the case of triangular libration points / |c G. Gómez [and others]. |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c 2001. | ||
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a World scientific monograph series in mathematics ; |v vol. 3 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Bibliographical survey. 1.1. Equations. The triangular equilibrium points and their stability. 1.2. Numerical results for the motion around L4 and L5. 1.3. Analytical results for the motion around L4 and L5. 1.4. Miscellaneous results -- ch. 2. Periodic orbits of the bicircular problem and their stability. 2.1. Introduction. 2.2. The equations of the bicircular problem. 2.3. Periodic orbits with the period of the Sun. 2.4. The tools: numerical continuation of periodic orbits and analysis of bifurcations. 2.5. The periodic orbits obtained by triplication -- ch. 3. Numerical simulations of the motion in an extended. Neighborhood of the triangular libration points in the Earth-Mmoon system. 3.1. Introduction. 3.2. Simulations of motion starting at the instantaneous triangular points at a given epoch. 3.3. Simulations of motion starting near the planar periodic orbit of Kolenkiewicz and Carpenter -- ch. 4. The equations of motion. 4.1. Reference systems. 4.2. The Lagrangian. 4.3. The Hamiltonian and the related expansions. 4.4. Some useful expansions. 4.5. Fourier analysis: the relevant frequencies and the related coefficients. 4.6. Concrete expansions of the Hamiltonian and the functions. 4.7. Simplified normalized equations. Tests -- ch. 5. Periodic orbits of some intermediate equations. 5.1. Equations of motion for the computation of intermediate periodic orbits. 5.2. Obtaining the periodic orbits around the triangular libration points for the intermediate equations. 5.3. Results and comments -- ch. 6. Quasi-periodic solution of the global equations: semianalytic approach. 6.1. The objective. 6.2. The algorithm. 6.3. The adequate set of relevant frequencies. 6.4. Avoiding secular terms. 6.5. The coefficients related to the different frequencies. 6.6. Determination of the coefficients of quasi-periodic functions using FFT. 6.7. Results and conclusions -- ch. 7. Numerical determination of suitable orbits of the simplified system. 7.1. The objective. 7.2. Description of two families of algorithms. reduction of the linearized equations. 7.3. Description of the methods. Comments. 7.4. Results and discussion -- ch. 8. Relative motion of two nearby spacecrafts. 8.1. The selection of orbits for the two spacecrafts. 8.2. Variations of the relative distance and orientation. Results. 8.3. Comments on the applicability of the results -- ch. 9. Summary. 9.1. Objectives of the work. 9.2. Contribution to the solution of the problem. 9.3. Conclusions. 9.4. Outlook. | |
650 | 0 | |a Three-body problem. |0 http://id.loc.gov/authorities/subjects/sh85135013 | |
650 | 0 | |a Lagrangian points. |0 http://id.loc.gov/authorities/subjects/sh85073966 | |
650 | 6 | |a Problème à trois corps. | |
650 | 6 | |a Points de Lagrange. | |
650 | 7 | |a SCIENCE |x Astronomy. |2 bisacsh | |
650 | 7 | |a Lagrangian points |2 fast | |
650 | 7 | |a Three-body problem |2 fast | |
650 | 7 | |a Sistemas dinâmicos. |2 larpcal | |
650 | 7 | |a Problemas de n-corpos. |2 larpcal | |
650 | 7 | |a Estabilidade. |2 larpcal | |
650 | 7 | |a Sistemas hamiltonianos. |2 larpcal | |
650 | 7 | |a Métodos de perturbação (sistemas dinâmicos) |2 larpcal | |
700 | 1 | |a Gómez, G. |q (Gerard) |1 https://id.oclc.org/worldcat/entity/E39PCjyDK6grq4g9WJmRBPqMCP |0 http://id.loc.gov/authorities/names/n00013779 | |
776 | 0 | 8 | |i Print version: |t Dynamics and mission design near libration points. Vol. 2, Fundamentals. |d Singapore ; River Edge, NJ : World Scientific, 2001 |z 9810242743 |z 9789810242749 |w (DLC) 00043633 |w (OCoLC)44594017 |
830 | 0 | |a World Scientific monograph series in mathematics ; |v v. 3. |0 http://id.loc.gov/authorities/names/n99254802 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235915 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685564 | ||
938 | |a EBSCOhost |b EBSC |n 235915 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn268988481 |
---|---|
_version_ | 1816881679690629120 |
adam_text | |
any_adam_object | |
author2 | Gómez, G. (Gerard) |
author2_role | |
author2_variant | g g gg |
author_GND | http://id.loc.gov/authorities/names/n00013779 |
author_facet | Gómez, G. (Gerard) |
author_sort | Gómez, G. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QB362 |
callnumber-raw | QB362.T5 D96eb vol. 2 |
callnumber-search | QB362.T5 D96eb vol. 2 |
callnumber-sort | QB 3362 T5 D96 EB VOL 12 |
callnumber-subject | QB - Astronomy |
collection | ZDB-4-EBA |
contents | Ch. 1. Bibliographical survey. 1.1. Equations. The triangular equilibrium points and their stability. 1.2. Numerical results for the motion around L4 and L5. 1.3. Analytical results for the motion around L4 and L5. 1.4. Miscellaneous results -- ch. 2. Periodic orbits of the bicircular problem and their stability. 2.1. Introduction. 2.2. The equations of the bicircular problem. 2.3. Periodic orbits with the period of the Sun. 2.4. The tools: numerical continuation of periodic orbits and analysis of bifurcations. 2.5. The periodic orbits obtained by triplication -- ch. 3. Numerical simulations of the motion in an extended. Neighborhood of the triangular libration points in the Earth-Mmoon system. 3.1. Introduction. 3.2. Simulations of motion starting at the instantaneous triangular points at a given epoch. 3.3. Simulations of motion starting near the planar periodic orbit of Kolenkiewicz and Carpenter -- ch. 4. The equations of motion. 4.1. Reference systems. 4.2. The Lagrangian. 4.3. The Hamiltonian and the related expansions. 4.4. Some useful expansions. 4.5. Fourier analysis: the relevant frequencies and the related coefficients. 4.6. Concrete expansions of the Hamiltonian and the functions. 4.7. Simplified normalized equations. Tests -- ch. 5. Periodic orbits of some intermediate equations. 5.1. Equations of motion for the computation of intermediate periodic orbits. 5.2. Obtaining the periodic orbits around the triangular libration points for the intermediate equations. 5.3. Results and comments -- ch. 6. Quasi-periodic solution of the global equations: semianalytic approach. 6.1. The objective. 6.2. The algorithm. 6.3. The adequate set of relevant frequencies. 6.4. Avoiding secular terms. 6.5. The coefficients related to the different frequencies. 6.6. Determination of the coefficients of quasi-periodic functions using FFT. 6.7. Results and conclusions -- ch. 7. Numerical determination of suitable orbits of the simplified system. 7.1. The objective. 7.2. Description of two families of algorithms. reduction of the linearized equations. 7.3. Description of the methods. Comments. 7.4. Results and discussion -- ch. 8. Relative motion of two nearby spacecrafts. 8.1. The selection of orbits for the two spacecrafts. 8.2. Variations of the relative distance and orientation. Results. 8.3. Comments on the applicability of the results -- ch. 9. Summary. 9.1. Objectives of the work. 9.2. Contribution to the solution of the problem. 9.3. Conclusions. 9.4. Outlook. |
ctrlnum | (OCoLC)268988481 |
dewey-full | 521/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 521 - Celestial mechanics |
dewey-raw | 521/.3 |
dewey-search | 521/.3 |
dewey-sort | 3521 13 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05068cam a2200541 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn268988481</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081105s2001 si a ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810649</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812810641</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)268988481</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QB362.T5</subfield><subfield code="b">D96eb vol. 2</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">521/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Dynamics and mission design near libration points.</subfield><subfield code="n">Vol. 2,</subfield><subfield code="p">Fundamentals :</subfield><subfield code="b">the case of triangular libration points /</subfield><subfield code="c">G. Gómez [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">World scientific monograph series in mathematics ;</subfield><subfield code="v">vol. 3</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Bibliographical survey. 1.1. Equations. The triangular equilibrium points and their stability. 1.2. Numerical results for the motion around L4 and L5. 1.3. Analytical results for the motion around L4 and L5. 1.4. Miscellaneous results -- ch. 2. Periodic orbits of the bicircular problem and their stability. 2.1. Introduction. 2.2. The equations of the bicircular problem. 2.3. Periodic orbits with the period of the Sun. 2.4. The tools: numerical continuation of periodic orbits and analysis of bifurcations. 2.5. The periodic orbits obtained by triplication -- ch. 3. Numerical simulations of the motion in an extended. Neighborhood of the triangular libration points in the Earth-Mmoon system. 3.1. Introduction. 3.2. Simulations of motion starting at the instantaneous triangular points at a given epoch. 3.3. Simulations of motion starting near the planar periodic orbit of Kolenkiewicz and Carpenter -- ch. 4. The equations of motion. 4.1. Reference systems. 4.2. The Lagrangian. 4.3. The Hamiltonian and the related expansions. 4.4. Some useful expansions. 4.5. Fourier analysis: the relevant frequencies and the related coefficients. 4.6. Concrete expansions of the Hamiltonian and the functions. 4.7. Simplified normalized equations. Tests -- ch. 5. Periodic orbits of some intermediate equations. 5.1. Equations of motion for the computation of intermediate periodic orbits. 5.2. Obtaining the periodic orbits around the triangular libration points for the intermediate equations. 5.3. Results and comments -- ch. 6. Quasi-periodic solution of the global equations: semianalytic approach. 6.1. The objective. 6.2. The algorithm. 6.3. The adequate set of relevant frequencies. 6.4. Avoiding secular terms. 6.5. The coefficients related to the different frequencies. 6.6. Determination of the coefficients of quasi-periodic functions using FFT. 6.7. Results and conclusions -- ch. 7. Numerical determination of suitable orbits of the simplified system. 7.1. The objective. 7.2. Description of two families of algorithms. reduction of the linearized equations. 7.3. Description of the methods. Comments. 7.4. Results and discussion -- ch. 8. Relative motion of two nearby spacecrafts. 8.1. The selection of orbits for the two spacecrafts. 8.2. Variations of the relative distance and orientation. Results. 8.3. Comments on the applicability of the results -- ch. 9. Summary. 9.1. Objectives of the work. 9.2. Contribution to the solution of the problem. 9.3. Conclusions. 9.4. Outlook.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-body problem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85135013</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lagrangian points.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85073966</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problème à trois corps.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Points de Lagrange.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Astronomy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lagrangian points</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-body problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sistemas dinâmicos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problemas de n-corpos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estabilidade.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sistemas hamiltonianos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Métodos de perturbação (sistemas dinâmicos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gómez, G.</subfield><subfield code="q">(Gerard)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyDK6grq4g9WJmRBPqMCP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00013779</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Dynamics and mission design near libration points. Vol. 2, Fundamentals.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, 2001</subfield><subfield code="z">9810242743</subfield><subfield code="z">9789810242749</subfield><subfield code="w">(DLC) 00043633</subfield><subfield code="w">(OCoLC)44594017</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">World Scientific monograph series in mathematics ;</subfield><subfield code="v">v. 3.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99254802</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235915</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685564</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235915</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn268988481 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812810649 9812810641 |
language | English |
oclc_num | 268988481 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific, |
record_format | marc |
series | World Scientific monograph series in mathematics ; |
series2 | World scientific monograph series in mathematics ; |
spelling | Dynamics and mission design near libration points. Vol. 2, Fundamentals : the case of triangular libration points / G. Gómez [and others]. Singapore ; River Edge, NJ : World Scientific, 2001. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier World scientific monograph series in mathematics ; vol. 3 Includes bibliographical references. Print version record. Ch. 1. Bibliographical survey. 1.1. Equations. The triangular equilibrium points and their stability. 1.2. Numerical results for the motion around L4 and L5. 1.3. Analytical results for the motion around L4 and L5. 1.4. Miscellaneous results -- ch. 2. Periodic orbits of the bicircular problem and their stability. 2.1. Introduction. 2.2. The equations of the bicircular problem. 2.3. Periodic orbits with the period of the Sun. 2.4. The tools: numerical continuation of periodic orbits and analysis of bifurcations. 2.5. The periodic orbits obtained by triplication -- ch. 3. Numerical simulations of the motion in an extended. Neighborhood of the triangular libration points in the Earth-Mmoon system. 3.1. Introduction. 3.2. Simulations of motion starting at the instantaneous triangular points at a given epoch. 3.3. Simulations of motion starting near the planar periodic orbit of Kolenkiewicz and Carpenter -- ch. 4. The equations of motion. 4.1. Reference systems. 4.2. The Lagrangian. 4.3. The Hamiltonian and the related expansions. 4.4. Some useful expansions. 4.5. Fourier analysis: the relevant frequencies and the related coefficients. 4.6. Concrete expansions of the Hamiltonian and the functions. 4.7. Simplified normalized equations. Tests -- ch. 5. Periodic orbits of some intermediate equations. 5.1. Equations of motion for the computation of intermediate periodic orbits. 5.2. Obtaining the periodic orbits around the triangular libration points for the intermediate equations. 5.3. Results and comments -- ch. 6. Quasi-periodic solution of the global equations: semianalytic approach. 6.1. The objective. 6.2. The algorithm. 6.3. The adequate set of relevant frequencies. 6.4. Avoiding secular terms. 6.5. The coefficients related to the different frequencies. 6.6. Determination of the coefficients of quasi-periodic functions using FFT. 6.7. Results and conclusions -- ch. 7. Numerical determination of suitable orbits of the simplified system. 7.1. The objective. 7.2. Description of two families of algorithms. reduction of the linearized equations. 7.3. Description of the methods. Comments. 7.4. Results and discussion -- ch. 8. Relative motion of two nearby spacecrafts. 8.1. The selection of orbits for the two spacecrafts. 8.2. Variations of the relative distance and orientation. Results. 8.3. Comments on the applicability of the results -- ch. 9. Summary. 9.1. Objectives of the work. 9.2. Contribution to the solution of the problem. 9.3. Conclusions. 9.4. Outlook. Three-body problem. http://id.loc.gov/authorities/subjects/sh85135013 Lagrangian points. http://id.loc.gov/authorities/subjects/sh85073966 Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. bisacsh Lagrangian points fast Three-body problem fast Sistemas dinâmicos. larpcal Problemas de n-corpos. larpcal Estabilidade. larpcal Sistemas hamiltonianos. larpcal Métodos de perturbação (sistemas dinâmicos) larpcal Gómez, G. (Gerard) https://id.oclc.org/worldcat/entity/E39PCjyDK6grq4g9WJmRBPqMCP http://id.loc.gov/authorities/names/n00013779 Print version: Dynamics and mission design near libration points. Vol. 2, Fundamentals. Singapore ; River Edge, NJ : World Scientific, 2001 9810242743 9789810242749 (DLC) 00043633 (OCoLC)44594017 World Scientific monograph series in mathematics ; v. 3. http://id.loc.gov/authorities/names/n99254802 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235915 Volltext |
spellingShingle | Dynamics and mission design near libration points. the case of triangular libration points / World Scientific monograph series in mathematics ; Ch. 1. Bibliographical survey. 1.1. Equations. The triangular equilibrium points and their stability. 1.2. Numerical results for the motion around L4 and L5. 1.3. Analytical results for the motion around L4 and L5. 1.4. Miscellaneous results -- ch. 2. Periodic orbits of the bicircular problem and their stability. 2.1. Introduction. 2.2. The equations of the bicircular problem. 2.3. Periodic orbits with the period of the Sun. 2.4. The tools: numerical continuation of periodic orbits and analysis of bifurcations. 2.5. The periodic orbits obtained by triplication -- ch. 3. Numerical simulations of the motion in an extended. Neighborhood of the triangular libration points in the Earth-Mmoon system. 3.1. Introduction. 3.2. Simulations of motion starting at the instantaneous triangular points at a given epoch. 3.3. Simulations of motion starting near the planar periodic orbit of Kolenkiewicz and Carpenter -- ch. 4. The equations of motion. 4.1. Reference systems. 4.2. The Lagrangian. 4.3. The Hamiltonian and the related expansions. 4.4. Some useful expansions. 4.5. Fourier analysis: the relevant frequencies and the related coefficients. 4.6. Concrete expansions of the Hamiltonian and the functions. 4.7. Simplified normalized equations. Tests -- ch. 5. Periodic orbits of some intermediate equations. 5.1. Equations of motion for the computation of intermediate periodic orbits. 5.2. Obtaining the periodic orbits around the triangular libration points for the intermediate equations. 5.3. Results and comments -- ch. 6. Quasi-periodic solution of the global equations: semianalytic approach. 6.1. The objective. 6.2. The algorithm. 6.3. The adequate set of relevant frequencies. 6.4. Avoiding secular terms. 6.5. The coefficients related to the different frequencies. 6.6. Determination of the coefficients of quasi-periodic functions using FFT. 6.7. Results and conclusions -- ch. 7. Numerical determination of suitable orbits of the simplified system. 7.1. The objective. 7.2. Description of two families of algorithms. reduction of the linearized equations. 7.3. Description of the methods. Comments. 7.4. Results and discussion -- ch. 8. Relative motion of two nearby spacecrafts. 8.1. The selection of orbits for the two spacecrafts. 8.2. Variations of the relative distance and orientation. Results. 8.3. Comments on the applicability of the results -- ch. 9. Summary. 9.1. Objectives of the work. 9.2. Contribution to the solution of the problem. 9.3. Conclusions. 9.4. Outlook. Three-body problem. http://id.loc.gov/authorities/subjects/sh85135013 Lagrangian points. http://id.loc.gov/authorities/subjects/sh85073966 Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. bisacsh Lagrangian points fast Three-body problem fast Sistemas dinâmicos. larpcal Problemas de n-corpos. larpcal Estabilidade. larpcal Sistemas hamiltonianos. larpcal Métodos de perturbação (sistemas dinâmicos) larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85135013 http://id.loc.gov/authorities/subjects/sh85073966 |
title | Dynamics and mission design near libration points. the case of triangular libration points / |
title_auth | Dynamics and mission design near libration points. the case of triangular libration points / |
title_exact_search | Dynamics and mission design near libration points. the case of triangular libration points / |
title_full | Dynamics and mission design near libration points. Vol. 2, Fundamentals : the case of triangular libration points / G. Gómez [and others]. |
title_fullStr | Dynamics and mission design near libration points. Vol. 2, Fundamentals : the case of triangular libration points / G. Gómez [and others]. |
title_full_unstemmed | Dynamics and mission design near libration points. Vol. 2, Fundamentals : the case of triangular libration points / G. Gómez [and others]. |
title_short | Dynamics and mission design near libration points. |
title_sort | dynamics and mission design near libration points fundamentals the case of triangular libration points |
title_sub | the case of triangular libration points / |
topic | Three-body problem. http://id.loc.gov/authorities/subjects/sh85135013 Lagrangian points. http://id.loc.gov/authorities/subjects/sh85073966 Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. bisacsh Lagrangian points fast Three-body problem fast Sistemas dinâmicos. larpcal Problemas de n-corpos. larpcal Estabilidade. larpcal Sistemas hamiltonianos. larpcal Métodos de perturbação (sistemas dinâmicos) larpcal |
topic_facet | Three-body problem. Lagrangian points. Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. Lagrangian points Three-body problem Sistemas dinâmicos. Problemas de n-corpos. Estabilidade. Sistemas hamiltonianos. Métodos de perturbação (sistemas dinâmicos) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235915 |
work_keys_str_mv | AT gomezg dynamicsandmissiondesignnearlibrationpointsvol2thecaseoftriangularlibrationpoints |