High-dimensional nonlinear diffusion stochastic processes :: modelling for engineering applications /
Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, NJ :
World Scientific,
2001.
|
Schriftenreihe: | Series on advances in mathematics for applied sciences ;
v. 56. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided. |
Beschreibung: | 1 online resource (xviii, 297 pages) |
Bibliographie: | Includes bibliographical references (and index. |
ISBN: | 9789812810540 9812810544 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn268966013 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081105s2001 si ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d UBY |d IDEBK |d E7B |d OCLCQ |d OCLCF |d DKDLA |d OCLCQ |d NLGGC |d OCLCO |d YDXCP |d EBLCP |d DEBSZ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d AZK |d LOA |d JBG |d AGLDB |d COCUF |d MOR |d CCO |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 505144461 |a 646769031 |a 764502850 |a 879074242 |a 961540231 |a 962607372 |a 1086440042 | ||
020 | |a 9789812810540 |q (electronic bk.) | ||
020 | |a 9812810544 |q (electronic bk.) | ||
020 | |z 9789810243852 | ||
020 | |z 9810243855 |q (alk. paper) | ||
035 | |a (OCoLC)268966013 |z (OCoLC)505144461 |z (OCoLC)646769031 |z (OCoLC)764502850 |z (OCoLC)879074242 |z (OCoLC)961540231 |z (OCoLC)962607372 |z (OCoLC)1086440042 | ||
050 | 4 | |a TA342 |b .M35 2001eb | |
072 | 7 | |a TEC |x 009000 |2 bisacsh | |
072 | 7 | |a TEC |x 035000 |2 bisacsh | |
082 | 7 | |a 620/.001/5118 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Mamontov, Yevgeny, |d 1955- |1 https://id.oclc.org/worldcat/entity/E39PCjDbTbpbbBgGWPTJkHXwyb |0 http://id.loc.gov/authorities/names/n00006062 | |
245 | 1 | 0 | |a High-dimensional nonlinear diffusion stochastic processes : |b modelling for engineering applications / |c Yevgeny Mamontov, Magnus Willander. |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c 2001. | ||
300 | |a 1 online resource (xviii, 297 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Series on advances in mathematics for applied sciences ; |v v. 56 | |
504 | |a Includes bibliographical references (and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided. | |
505 | 0 | |a Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process. | |
505 | 8 | |a 1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation. | |
505 | 8 | |a 1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system. | |
505 | 8 | |a 2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density. | |
505 | 8 | |a 3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion. | |
650 | 0 | |a Engineering |x Mathematical models. | |
650 | 0 | |a Stochastic processes. |0 http://id.loc.gov/authorities/subjects/sh85128181 | |
650 | 0 | |a Diffusion processes. |0 http://id.loc.gov/authorities/subjects/sh85037941 | |
650 | 0 | |a Differential equations, Nonlinear. |0 http://id.loc.gov/authorities/subjects/sh85037906 | |
650 | 2 | |a Stochastic Processes |0 https://id.nlm.nih.gov/mesh/D013269 | |
650 | 6 | |a Ingénierie |x Modèles mathématiques. | |
650 | 6 | |a Processus stochastiques. | |
650 | 6 | |a Processus de diffusion. | |
650 | 6 | |a Équations différentielles non linéaires. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Engineering (General) |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Reference. |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |2 fast | |
650 | 7 | |a Diffusion processes |2 fast | |
650 | 7 | |a Engineering |x Mathematical models |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
700 | 1 | |a Willander, M. |1 https://id.oclc.org/worldcat/entity/E39PCjyMkmcMTJRpKKtdGWp8wd |0 http://id.loc.gov/authorities/names/n97015960 | |
758 | |i has work: |a High-dimensional nonlinear diffusion stochastic processes (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH6dmX34dPQRRkrJdyGKBd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Mamontov, Yevgeny, 1955- |t High-dimensional nonlinear diffusion stochastic processes. |d Singapore ; River Edge, NJ : World Scientific, 2001 |z 9810243855 |z 9789810243852 |w (DLC) 00053437 |w (OCoLC)45283225 |
830 | 0 | |a Series on advances in mathematics for applied sciences ; |v v. 56. |0 http://id.loc.gov/authorities/names/n90710999 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235902 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685556 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1679503 | ||
938 | |a ebrary |b EBRY |n ebr10255985 | ||
938 | |a EBSCOhost |b EBSC |n 235902 | ||
938 | |a YBP Library Services |b YANK |n 2915223 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn268966013 |
---|---|
_version_ | 1816881679657074689 |
adam_text | |
any_adam_object | |
author | Mamontov, Yevgeny, 1955- |
author2 | Willander, M. |
author2_role | |
author2_variant | m w mw |
author_GND | http://id.loc.gov/authorities/names/n00006062 http://id.loc.gov/authorities/names/n97015960 |
author_facet | Mamontov, Yevgeny, 1955- Willander, M. |
author_role | |
author_sort | Mamontov, Yevgeny, 1955- |
author_variant | y m ym |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA342 |
callnumber-raw | TA342 .M35 2001eb |
callnumber-search | TA342 .M35 2001eb |
callnumber-sort | TA 3342 M35 42001EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process. 1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation. 1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system. 2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density. 3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion. |
ctrlnum | (OCoLC)268966013 |
dewey-full | 620/.001/5118 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620/.001/5118 |
dewey-search | 620/.001/5118 |
dewey-sort | 3620 11 45118 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07636cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn268966013</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081105s2001 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UBY</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">505144461</subfield><subfield code="a">646769031</subfield><subfield code="a">764502850</subfield><subfield code="a">879074242</subfield><subfield code="a">961540231</subfield><subfield code="a">962607372</subfield><subfield code="a">1086440042</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810540</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812810544</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810243852</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810243855</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)268966013</subfield><subfield code="z">(OCoLC)505144461</subfield><subfield code="z">(OCoLC)646769031</subfield><subfield code="z">(OCoLC)764502850</subfield><subfield code="z">(OCoLC)879074242</subfield><subfield code="z">(OCoLC)961540231</subfield><subfield code="z">(OCoLC)962607372</subfield><subfield code="z">(OCoLC)1086440042</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA342</subfield><subfield code="b">.M35 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">035000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620/.001/5118</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mamontov, Yevgeny,</subfield><subfield code="d">1955-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDbTbpbbBgGWPTJkHXwyb</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00006062</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High-dimensional nonlinear diffusion stochastic processes :</subfield><subfield code="b">modelling for engineering applications /</subfield><subfield code="c">Yevgeny Mamontov, Magnus Willander.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 297 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 56</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128181</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Diffusion processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037941</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Nonlinear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037906</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Stochastic Processes</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D013269</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ingénierie</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus de diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diffusion processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willander, M.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyMkmcMTJRpKKtdGWp8wd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97015960</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">High-dimensional nonlinear diffusion stochastic processes (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH6dmX34dPQRRkrJdyGKBd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mamontov, Yevgeny, 1955-</subfield><subfield code="t">High-dimensional nonlinear diffusion stochastic processes.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, 2001</subfield><subfield code="z">9810243855</subfield><subfield code="z">9789810243852</subfield><subfield code="w">(DLC) 00053437</subfield><subfield code="w">(OCoLC)45283225</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 56.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90710999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235902</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685556</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1679503</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255985</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235902</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2915223</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn268966013 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812810540 9812810544 |
language | English |
oclc_num | 268966013 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xviii, 297 pages) |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific, |
record_format | marc |
series | Series on advances in mathematics for applied sciences ; |
series2 | Series on advances in mathematics for applied sciences ; |
spelling | Mamontov, Yevgeny, 1955- https://id.oclc.org/worldcat/entity/E39PCjDbTbpbbBgGWPTJkHXwyb http://id.loc.gov/authorities/names/n00006062 High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / Yevgeny Mamontov, Magnus Willander. Singapore ; River Edge, NJ : World Scientific, 2001. 1 online resource (xviii, 297 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Series on advances in mathematics for applied sciences ; v. 56 Includes bibliographical references (and index. Print version record. Annotation This book is one of the first few devoted to high-dimensional diffusion stochastic processes with nonlinear coefficients. These processes are closely associated with large systems of Ito's stochastic differential equations and with discretized-in-the-parameter versions of Ito's stochastic differential equations that are nonlocally dependent on the parameter. The latter models include Ito's stochastic integro-differential, partial differential and partial integro-differential equations. The book presents the new analytical treatment which can serve as the basis of a combined, analytical -- numerical approach to greater computational efficiency. Some examples of the modelling of noise in semiconductor devices are provided. Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process. 1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation. 1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system. 2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density. 3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion. Engineering Mathematical models. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Diffusion processes. http://id.loc.gov/authorities/subjects/sh85037941 Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Ingénierie Modèles mathématiques. Processus stochastiques. Processus de diffusion. Équations différentielles non linéaires. TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Differential equations, Nonlinear fast Diffusion processes fast Engineering Mathematical models fast Stochastic processes fast Willander, M. https://id.oclc.org/worldcat/entity/E39PCjyMkmcMTJRpKKtdGWp8wd http://id.loc.gov/authorities/names/n97015960 has work: High-dimensional nonlinear diffusion stochastic processes (Text) https://id.oclc.org/worldcat/entity/E39PCH6dmX34dPQRRkrJdyGKBd https://id.oclc.org/worldcat/ontology/hasWork Print version: Mamontov, Yevgeny, 1955- High-dimensional nonlinear diffusion stochastic processes. Singapore ; River Edge, NJ : World Scientific, 2001 9810243855 9789810243852 (DLC) 00053437 (OCoLC)45283225 Series on advances in mathematics for applied sciences ; v. 56. http://id.loc.gov/authorities/names/n90710999 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235902 Volltext |
spellingShingle | Mamontov, Yevgeny, 1955- High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / Series on advances in mathematics for applied sciences ; Preface; Contents; Chapter 1 Introductory Chapter; 1.1 Prerequisites for Reading; 1.2 Random Variable. Stochastic Process. Random Field. High-Dimensional Process. One-Point Process; 1.3 Two-Point Process. Expectation. Markov Process. Example of Non-Markov Process Associated with Multidimensional Markov Process; 1.4 Preceding Subsequent and Transition Probability Densities. The Chapman-Kolmogorov Equation. Initial Condition for Markov Process; 1.4.1 The Chapman-Kolmogorov equation; 1.4.2 Initial condition for Markov process. 1.5 Homogeneous Markov Process. Example of Markov Process: The Wiener Process1.6 Expectation Variance and Standard Deviations of Markov Process; 1.7 Invariant and Stationary Markov Processes. Covariance. Spectral Densities; 1.8 Diffusion Process; 1.9 Example of Diffusion Processes: Solutions of Ito's Stochastic Ordinary Differential Equation; 1.10 The Kolmogorov Backward Equation; 1.11 Figures of Merit. Diffusion Modelling of High-Dimensional Systems; 1.12 Common Analytical Techniques to Determine Probability Densities of Diffusion Processes. The Kolmogorov Forward Equation. 1.12.1 Probability density1.12.2 Invariant probability density; 1.12.3 Stationary probability density; 1.13 The Purpose and Content of This Book; Chapter 2 Diffusion Processes; 2.1 Introduction; 2.2 Time-Derivatives of Expectation and Variance; 2.3 Ordinary Differential Equation Systems for Expectation; 2.3.1 The first-order system; 2.3.2 The second-order system; 2.3.3 Systems of the higher orders; 2.4 Models for Noise-Induced Phenomena in Expectation; 2.4.1 The case of stochastic resonance; 2.4.2 Practically efficient implementation of the second-order system. 2.5 Ordinary Differential Equation System for Variance2.5.1 Damping matrix; 2.5.2 The uncorrelated-matrixes approximation; 2.5.3 Nonlinearity of the drift function; 2.5.4 Fundamental limitation of the state-space-independent approximations for the diffusion and damping matrixes; 2.6 The Steady-State Approximation for The Probability Density; Chapter 3 Invariant Diffusion Processes; 3.1 Introduction; 3.2 Preliminary Remarks; 3.3 Expectation. The Finite-Equation Method; 3.4 Explicit Expression for Variance; 3.5 The Simplified Detailed-Balance Approximation for Invariant Probability Density. 3.5.1 Partial differential equation for logarithm of the density3.5.2 Truncated equation for the logarithm and the detailed-balance equation; 3.5.3 Case of the detailed balance; 3.5.4 The detailed-balance approximation; 3.5.5 The simplified detailed-balance approximation. Theorem on the approximating density; 3.6 Analytical-Numerical Approach to Non-Invariant and Invariant Diffusion Processes; 3.6.1 Choice of the bounded domain of the integration; 3.6.2 Evaluation of the multifold integrals. The Monte Carlo technique; 3.6.3 Summary of the approach; 3.7 Discussion. Engineering Mathematical models. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Diffusion processes. http://id.loc.gov/authorities/subjects/sh85037941 Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Ingénierie Modèles mathématiques. Processus stochastiques. Processus de diffusion. Équations différentielles non linéaires. TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Differential equations, Nonlinear fast Diffusion processes fast Engineering Mathematical models fast Stochastic processes fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85128181 http://id.loc.gov/authorities/subjects/sh85037941 http://id.loc.gov/authorities/subjects/sh85037906 https://id.nlm.nih.gov/mesh/D013269 |
title | High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / |
title_auth | High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / |
title_exact_search | High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / |
title_full | High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / Yevgeny Mamontov, Magnus Willander. |
title_fullStr | High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / Yevgeny Mamontov, Magnus Willander. |
title_full_unstemmed | High-dimensional nonlinear diffusion stochastic processes : modelling for engineering applications / Yevgeny Mamontov, Magnus Willander. |
title_short | High-dimensional nonlinear diffusion stochastic processes : |
title_sort | high dimensional nonlinear diffusion stochastic processes modelling for engineering applications |
title_sub | modelling for engineering applications / |
topic | Engineering Mathematical models. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Diffusion processes. http://id.loc.gov/authorities/subjects/sh85037941 Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Ingénierie Modèles mathématiques. Processus stochastiques. Processus de diffusion. Équations différentielles non linéaires. TECHNOLOGY & ENGINEERING Engineering (General) bisacsh TECHNOLOGY & ENGINEERING Reference. bisacsh Differential equations, Nonlinear fast Diffusion processes fast Engineering Mathematical models fast Stochastic processes fast |
topic_facet | Engineering Mathematical models. Stochastic processes. Diffusion processes. Differential equations, Nonlinear. Stochastic Processes Ingénierie Modèles mathématiques. Processus stochastiques. Processus de diffusion. Équations différentielles non linéaires. TECHNOLOGY & ENGINEERING Engineering (General) TECHNOLOGY & ENGINEERING Reference. Differential equations, Nonlinear Diffusion processes Engineering Mathematical models Stochastic processes |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235902 |
work_keys_str_mv | AT mamontovyevgeny highdimensionalnonlineardiffusionstochasticprocessesmodellingforengineeringapplications AT willanderm highdimensionalnonlineardiffusionstochasticprocessesmodellingforengineeringapplications |