Introduction to 2-spinors in general relativity /:
This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the alge...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, NJ :
World Scientific,
©2003.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter. |
Beschreibung: | 1 online resource (xii, 191 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 181-184) and index. |
ISBN: | 9789812795311 9812795316 1281935727 9781281935724 9786611935726 661193572X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn263148406 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081023s2003 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d UBY |d IDEBK |d E7B |d OCLCQ |d OCLCF |d I9W |d EBLCP |d DEBSZ |d OCLCQ |d NLGGC |d OCLCQ |d LOA |d JBG |d AGLDB |d COCUF |d MOR |d CCO |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d OCLCQ |d VT2 |d AU@ |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d HS0 |d UKCRE |d VLY |d AJS |d OCLCO |d DST |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 505142788 |a 646768385 |a 764499700 |a 815752540 |a 961539892 |a 962607110 |a 968289140 |a 988457660 |a 992053215 |a 1037700722 |a 1038621563 |a 1045487278 |a 1055319643 |a 1086510757 |a 1153519806 |a 1162051510 |a 1227630267 |a 1241755622 |a 1259149952 |a 1290112110 |a 1300639382 |a 1303324439 |a 1303480274 |a 1306567835 |a 1398006601 | ||
020 | |a 9789812795311 |q (electronic bk.) | ||
020 | |a 9812795316 |q (electronic bk.) | ||
020 | |a 1281935727 | ||
020 | |a 9781281935724 | ||
020 | |a 9786611935726 | ||
020 | |a 661193572X | ||
020 | |z 9789812383075 | ||
020 | |z 9812383077 | ||
035 | |a (OCoLC)263148406 |z (OCoLC)505142788 |z (OCoLC)646768385 |z (OCoLC)764499700 |z (OCoLC)815752540 |z (OCoLC)961539892 |z (OCoLC)962607110 |z (OCoLC)968289140 |z (OCoLC)988457660 |z (OCoLC)992053215 |z (OCoLC)1037700722 |z (OCoLC)1038621563 |z (OCoLC)1045487278 |z (OCoLC)1055319643 |z (OCoLC)1086510757 |z (OCoLC)1153519806 |z (OCoLC)1162051510 |z (OCoLC)1227630267 |z (OCoLC)1241755622 |z (OCoLC)1259149952 |z (OCoLC)1290112110 |z (OCoLC)1300639382 |z (OCoLC)1303324439 |z (OCoLC)1303480274 |z (OCoLC)1306567835 |z (OCoLC)1398006601 | ||
050 | 4 | |a QC20.7.S65 |b O35 2003eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
072 | 7 | |a PHR |2 bicssc | |
082 | 7 | |a 530.15/563 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a O'Donnell, Peter J., |d 1964- |1 https://id.oclc.org/worldcat/entity/E39PCjv9fCKy7D3HtTxFj9yMHd |0 http://id.loc.gov/authorities/names/no2003095971 | |
245 | 1 | 0 | |a Introduction to 2-spinors in general relativity / |c Peter O'Donnell. |
246 | 3 | 0 | |a 2-spinors in general relativity |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c ©2003. | ||
300 | |a 1 online resource (xii, 191 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 181-184) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises. | |
520 | |a This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter. | ||
546 | |a English. | ||
650 | 0 | |a Spinor analysis. |0 http://id.loc.gov/authorities/subjects/sh85126718 | |
650 | 0 | |a General relativity (Physics) |0 http://id.loc.gov/authorities/subjects/sh85053765 | |
650 | 6 | |a Relativité générale (Physique) | |
650 | 6 | |a Analyse spinorielle. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a General relativity (Physics) |2 fast | |
650 | 7 | |a Spinor analysis |2 fast | |
650 | 7 | |a Relatividade (física) |2 larpcal | |
758 | |i has work: |a Introduction to 2-spinors in general relativity (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFTcRVthQBgw7PV7Rqxwfq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a O'Donnell, Peter J., 1964- |t Introduction to 2-spinors in general relativity. |d Singapore ; River Edge, NJ : World Scientific, ©2003 |z 9812383077 |z 9789812383075 |w (DLC) 2005297918 |w (OCoLC)52803565 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235635 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685177 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1681610 | ||
938 | |a EBSCOhost |b EBSC |n 235635 | ||
938 | |a YBP Library Services |b YANK |n 2895760 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn263148406 |
---|---|
_version_ | 1816881679097135105 |
adam_text | |
any_adam_object | |
author | O'Donnell, Peter J., 1964- |
author_GND | http://id.loc.gov/authorities/names/no2003095971 |
author_facet | O'Donnell, Peter J., 1964- |
author_role | |
author_sort | O'Donnell, Peter J., 1964- |
author_variant | p j o pj pjo |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.S65 O35 2003eb |
callnumber-search | QC20.7.S65 O35 2003eb |
callnumber-sort | QC 220.7 S65 O35 42003EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises. |
ctrlnum | (OCoLC)263148406 |
dewey-full | 530.15/563 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/563 |
dewey-search | 530.15/563 |
dewey-sort | 3530.15 3563 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06036cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn263148406</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081023s2003 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UBY</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">I9W</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">505142788</subfield><subfield code="a">646768385</subfield><subfield code="a">764499700</subfield><subfield code="a">815752540</subfield><subfield code="a">961539892</subfield><subfield code="a">962607110</subfield><subfield code="a">968289140</subfield><subfield code="a">988457660</subfield><subfield code="a">992053215</subfield><subfield code="a">1037700722</subfield><subfield code="a">1038621563</subfield><subfield code="a">1045487278</subfield><subfield code="a">1055319643</subfield><subfield code="a">1086510757</subfield><subfield code="a">1153519806</subfield><subfield code="a">1162051510</subfield><subfield code="a">1227630267</subfield><subfield code="a">1241755622</subfield><subfield code="a">1259149952</subfield><subfield code="a">1290112110</subfield><subfield code="a">1300639382</subfield><subfield code="a">1303324439</subfield><subfield code="a">1303480274</subfield><subfield code="a">1306567835</subfield><subfield code="a">1398006601</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795311</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795316</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281935727</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281935724</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611935726</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">661193572X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812383075</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812383077</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263148406</subfield><subfield code="z">(OCoLC)505142788</subfield><subfield code="z">(OCoLC)646768385</subfield><subfield code="z">(OCoLC)764499700</subfield><subfield code="z">(OCoLC)815752540</subfield><subfield code="z">(OCoLC)961539892</subfield><subfield code="z">(OCoLC)962607110</subfield><subfield code="z">(OCoLC)968289140</subfield><subfield code="z">(OCoLC)988457660</subfield><subfield code="z">(OCoLC)992053215</subfield><subfield code="z">(OCoLC)1037700722</subfield><subfield code="z">(OCoLC)1038621563</subfield><subfield code="z">(OCoLC)1045487278</subfield><subfield code="z">(OCoLC)1055319643</subfield><subfield code="z">(OCoLC)1086510757</subfield><subfield code="z">(OCoLC)1153519806</subfield><subfield code="z">(OCoLC)1162051510</subfield><subfield code="z">(OCoLC)1227630267</subfield><subfield code="z">(OCoLC)1241755622</subfield><subfield code="z">(OCoLC)1259149952</subfield><subfield code="z">(OCoLC)1290112110</subfield><subfield code="z">(OCoLC)1300639382</subfield><subfield code="z">(OCoLC)1303324439</subfield><subfield code="z">(OCoLC)1303480274</subfield><subfield code="z">(OCoLC)1306567835</subfield><subfield code="z">(OCoLC)1398006601</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.S65</subfield><subfield code="b">O35 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHR</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.15/563</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O'Donnell, Peter J.,</subfield><subfield code="d">1964-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjv9fCKy7D3HtTxFj9yMHd</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2003095971</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to 2-spinors in general relativity /</subfield><subfield code="c">Peter O'Donnell.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">2-spinors in general relativity</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 191 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 181-184) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Spinor analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85126718</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">General relativity (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85053765</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Relativité générale (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse spinorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">General relativity (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spinor analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relatividade (física)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Introduction to 2-spinors in general relativity (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFTcRVthQBgw7PV7Rqxwfq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">O'Donnell, Peter J., 1964-</subfield><subfield code="t">Introduction to 2-spinors in general relativity.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, ©2003</subfield><subfield code="z">9812383077</subfield><subfield code="z">9789812383075</subfield><subfield code="w">(DLC) 2005297918</subfield><subfield code="w">(OCoLC)52803565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235635</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685177</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681610</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235635</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2895760</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn263148406 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812795311 9812795316 1281935727 9781281935724 9786611935726 661193572X |
language | English |
oclc_num | 263148406 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 191 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific, |
record_format | marc |
spelling | O'Donnell, Peter J., 1964- https://id.oclc.org/worldcat/entity/E39PCjv9fCKy7D3HtTxFj9yMHd http://id.loc.gov/authorities/names/no2003095971 Introduction to 2-spinors in general relativity / Peter O'Donnell. 2-spinors in general relativity Singapore ; River Edge, NJ : World Scientific, ©2003. 1 online resource (xii, 191 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 181-184) and index. Print version record. 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises. This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter. English. Spinor analysis. http://id.loc.gov/authorities/subjects/sh85126718 General relativity (Physics) http://id.loc.gov/authorities/subjects/sh85053765 Relativité générale (Physique) Analyse spinorielle. SCIENCE Physics Mathematical & Computational. bisacsh General relativity (Physics) fast Spinor analysis fast Relatividade (física) larpcal has work: Introduction to 2-spinors in general relativity (Text) https://id.oclc.org/worldcat/entity/E39PCFTcRVthQBgw7PV7Rqxwfq https://id.oclc.org/worldcat/ontology/hasWork Print version: O'Donnell, Peter J., 1964- Introduction to 2-spinors in general relativity. Singapore ; River Edge, NJ : World Scientific, ©2003 9812383077 9789812383075 (DLC) 2005297918 (OCoLC)52803565 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235635 Volltext |
spellingShingle | O'Donnell, Peter J., 1964- Introduction to 2-spinors in general relativity / 1. Spinor geometry. 1.1. Minkowski space. 1.2. The null cone and Riemann sphere. 1.3. Spin transformations and spin matrices. 1.4. Flagpoles and flag planes. 1.5. Spin-space. 1.6. Exercises -- 2. Spinor algebra. 2.1. Abstract index notation. 2.2. Complex conjugation of spinor components. 2.3. Vector bases and abstract indices. 2.4. Levi-Civita spinor. 2.5. Spinor dyad basis and its components. 2.6. Spinor symmetry operations. 2.7. The connection between world-tensors and spinors. 2.8. The decomposition of spinors. 2.9. The canonical decomposition of symmetric spinors. 2.10. Exercises -- 3. Spinor analysis. 3.1. Spinor form of the covariant derivative. 3.2. The curvature spinors. 3.3. Spinor equivalent of the Ricci identities. 3.4. Spinor equivalent of the Bianchi identities. 3.5. The Newman-Penrose spin coefficient formalism. 3.6. Newman-Penrose quantities under Lorentz transformations. 3.7. Miscellaneous transformations. 3.8. Geroch-Held-Penrose formalism. 3.9. Goldberg-Sachs theorem. 3.10. Exercises -- 4. Lanczos spinor. 4.1. Introduction. 4.2. Lanczos' Lagrangian. 4.3. Lanczos' gauge conditions. 4.4. The Lanczos spinor. 4.5. The spinor version of the Weyl-Lanczos equations. 4.6. The Lanczos coefficients. 4.7. The Weyl-Lanczos equations in spin coefficient form. 4.8. The Ricci-Lanczos equations in spin coefficient form. 4.9. The behaviour of Lanczos coefficients under Lorentz transformations. 4.10. Miscellaneous transformations. 4.11. The Weyl-Lanczos equations in GHP form. 4.12. Solutions of the Weyl-Lanczos equations. 4.13. A brief note on the Lanczos spinor/tensor. 4.14. Exercises. Spinor analysis. http://id.loc.gov/authorities/subjects/sh85126718 General relativity (Physics) http://id.loc.gov/authorities/subjects/sh85053765 Relativité générale (Physique) Analyse spinorielle. SCIENCE Physics Mathematical & Computational. bisacsh General relativity (Physics) fast Spinor analysis fast Relatividade (física) larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85126718 http://id.loc.gov/authorities/subjects/sh85053765 |
title | Introduction to 2-spinors in general relativity / |
title_alt | 2-spinors in general relativity |
title_auth | Introduction to 2-spinors in general relativity / |
title_exact_search | Introduction to 2-spinors in general relativity / |
title_full | Introduction to 2-spinors in general relativity / Peter O'Donnell. |
title_fullStr | Introduction to 2-spinors in general relativity / Peter O'Donnell. |
title_full_unstemmed | Introduction to 2-spinors in general relativity / Peter O'Donnell. |
title_short | Introduction to 2-spinors in general relativity / |
title_sort | introduction to 2 spinors in general relativity |
topic | Spinor analysis. http://id.loc.gov/authorities/subjects/sh85126718 General relativity (Physics) http://id.loc.gov/authorities/subjects/sh85053765 Relativité générale (Physique) Analyse spinorielle. SCIENCE Physics Mathematical & Computational. bisacsh General relativity (Physics) fast Spinor analysis fast Relatividade (física) larpcal |
topic_facet | Spinor analysis. General relativity (Physics) Relativité générale (Physique) Analyse spinorielle. SCIENCE Physics Mathematical & Computational. Spinor analysis Relatividade (física) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235635 |
work_keys_str_mv | AT odonnellpeterj introductionto2spinorsingeneralrelativity AT odonnellpeterj 2spinorsingeneralrelativity |