Completely positive matrices /:
Annotation
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J. :
World Scienfic,
2003.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation |
Beschreibung: | 1 online resource (ix, 206 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 193-197) and index. |
ISBN: | 9789812795212 9812795219 9789812383686 9812383689 1281935638 9781281935632 9786611935634 6611935630 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn263131487 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081023s2003 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d UBY |d IDEBK |d E7B |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d OCLCO |d NLGGC |d OCLCQ |d AZK |d LOA |d AGLDB |d COCUF |d MOR |d CCO |d PIFAG |d OCLCQ |d COO |d STF |d WRM |d VTS |d NRAMU |d VT2 |d OCLCQ |d WYU |d M8D |d UKCRE |d VLY |d HS0 |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL | ||
019 | |a 505146109 |a 646768576 |a 764500567 |a 961529514 |a 962725534 |a 968284023 |a 974977353 |a 975027646 |a 987748053 |a 988409215 |a 991977437 |a 1037774039 |a 1038663328 |a 1043633573 |a 1081222193 |a 1153465601 |a 1162037167 |a 1227640618 | ||
020 | |a 9789812795212 |q (electronic bk.) | ||
020 | |a 9812795219 |q (electronic bk.) | ||
020 | |a 9789812383686 | ||
020 | |a 9812383689 | ||
020 | |a 1281935638 | ||
020 | |a 9781281935632 | ||
020 | |a 9786611935634 | ||
020 | |a 6611935630 | ||
020 | |z 9812383689 | ||
035 | |a (OCoLC)263131487 |z (OCoLC)505146109 |z (OCoLC)646768576 |z (OCoLC)764500567 |z (OCoLC)961529514 |z (OCoLC)962725534 |z (OCoLC)968284023 |z (OCoLC)974977353 |z (OCoLC)975027646 |z (OCoLC)987748053 |z (OCoLC)988409215 |z (OCoLC)991977437 |z (OCoLC)1037774039 |z (OCoLC)1038663328 |z (OCoLC)1043633573 |z (OCoLC)1081222193 |z (OCoLC)1153465601 |z (OCoLC)1162037167 |z (OCoLC)1227640618 | ||
050 | 4 | |a QA188 |b .B465 2003eb | |
072 | 7 | |a MAT |x 019000 |2 bisacsh | |
082 | 7 | |a 512.9/434 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Berman, Abraham. | |
245 | 1 | 0 | |a Completely positive matrices / |c Abraham Berman, Naomi Shaked-Monderer. |
260 | |a River Edge, N.J. : |b World Scienfic, |c 2003. | ||
300 | |a 1 online resource (ix, 206 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 193-197) and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a Annotation |b A real matrix is positive semidefinite if it can be decomposed as A=BBT. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BBT is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. | |
505 | 0 | |a Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank? | |
546 | |a English. | ||
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 6 | |a Matrices. | |
650 | 7 | |a MATHEMATICS |x Matrices. |2 bisacsh | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a Matrizes (álgebra) |2 larpcal | |
700 | 1 | |a Shaked-Monderer, Naomi. | |
758 | |i has work: |a Completely positive matrices (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGBcYc6j4wywfqMyBwqDG3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Berman, Abraham. |t Completely positive matrices. |d River Edge, N.J. : World Scienfic, 2003 |z 9812383689 |z 9789812383686 |w (DLC) 2004269154 |w (OCoLC)52718561 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235624 |3 Volltext |
938 | |a Internet Archive |b INAR |n completelypositi0027berm | ||
938 | |a EBSCOhost |b EBSC |n 235624 | ||
938 | |a YBP Library Services |b YANK |n 2895752 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn263131487 |
---|---|
_version_ | 1816881679022686208 |
adam_text | |
any_adam_object | |
author | Berman, Abraham |
author2 | Shaked-Monderer, Naomi |
author2_role | |
author2_variant | n s m nsm |
author_facet | Berman, Abraham Shaked-Monderer, Naomi |
author_role | |
author_sort | Berman, Abraham |
author_variant | a b ab |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .B465 2003eb |
callnumber-search | QA188 .B465 2003eb |
callnumber-sort | QA 3188 B465 42003EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank? |
ctrlnum | (OCoLC)263131487 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04375cam a2200601 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn263131487</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081023s2003 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UBY</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">M8D</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">505146109</subfield><subfield code="a">646768576</subfield><subfield code="a">764500567</subfield><subfield code="a">961529514</subfield><subfield code="a">962725534</subfield><subfield code="a">968284023</subfield><subfield code="a">974977353</subfield><subfield code="a">975027646</subfield><subfield code="a">987748053</subfield><subfield code="a">988409215</subfield><subfield code="a">991977437</subfield><subfield code="a">1037774039</subfield><subfield code="a">1038663328</subfield><subfield code="a">1043633573</subfield><subfield code="a">1081222193</subfield><subfield code="a">1153465601</subfield><subfield code="a">1162037167</subfield><subfield code="a">1227640618</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795212</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795219</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812383686</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812383689</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281935638</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281935632</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611935634</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611935630</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812383689</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263131487</subfield><subfield code="z">(OCoLC)505146109</subfield><subfield code="z">(OCoLC)646768576</subfield><subfield code="z">(OCoLC)764500567</subfield><subfield code="z">(OCoLC)961529514</subfield><subfield code="z">(OCoLC)962725534</subfield><subfield code="z">(OCoLC)968284023</subfield><subfield code="z">(OCoLC)974977353</subfield><subfield code="z">(OCoLC)975027646</subfield><subfield code="z">(OCoLC)987748053</subfield><subfield code="z">(OCoLC)988409215</subfield><subfield code="z">(OCoLC)991977437</subfield><subfield code="z">(OCoLC)1037774039</subfield><subfield code="z">(OCoLC)1038663328</subfield><subfield code="z">(OCoLC)1043633573</subfield><subfield code="z">(OCoLC)1081222193</subfield><subfield code="z">(OCoLC)1153465601</subfield><subfield code="z">(OCoLC)1162037167</subfield><subfield code="z">(OCoLC)1227640618</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.B465 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berman, Abraham.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Completely positive matrices /</subfield><subfield code="c">Abraham Berman, Naomi Shaked-Monderer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scienfic,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 206 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 193-197) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation</subfield><subfield code="b">A real matrix is positive semidefinite if it can be decomposed as A=BBT. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BBT is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank?</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Matrices.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrizes (álgebra)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shaked-Monderer, Naomi.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Completely positive matrices (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGBcYc6j4wywfqMyBwqDG3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berman, Abraham.</subfield><subfield code="t">Completely positive matrices.</subfield><subfield code="d">River Edge, N.J. : World Scienfic, 2003</subfield><subfield code="z">9812383689</subfield><subfield code="z">9789812383686</subfield><subfield code="w">(DLC) 2004269154</subfield><subfield code="w">(OCoLC)52718561</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235624</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">completelypositi0027berm</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235624</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2895752</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn263131487 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812795212 9812795219 9789812383686 9812383689 1281935638 9781281935632 9786611935634 6611935630 |
language | English |
oclc_num | 263131487 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 206 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scienfic, |
record_format | marc |
spelling | Berman, Abraham. Completely positive matrices / Abraham Berman, Naomi Shaked-Monderer. River Edge, N.J. : World Scienfic, 2003. 1 online resource (ix, 206 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references (pages 193-197) and index. Print version record. Annotation A real matrix is positive semidefinite if it can be decomposed as A=BBT. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BBT is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank? English. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Matrices. MATHEMATICS Matrices. bisacsh Matrices fast Matrizes (álgebra) larpcal Shaked-Monderer, Naomi. has work: Completely positive matrices (Text) https://id.oclc.org/worldcat/entity/E39PCGBcYc6j4wywfqMyBwqDG3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Berman, Abraham. Completely positive matrices. River Edge, N.J. : World Scienfic, 2003 9812383689 9789812383686 (DLC) 2004269154 (OCoLC)52718561 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235624 Volltext |
spellingShingle | Berman, Abraham Completely positive matrices / Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank? Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Matrices. MATHEMATICS Matrices. bisacsh Matrices fast Matrizes (álgebra) larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082210 |
title | Completely positive matrices / |
title_auth | Completely positive matrices / |
title_exact_search | Completely positive matrices / |
title_full | Completely positive matrices / Abraham Berman, Naomi Shaked-Monderer. |
title_fullStr | Completely positive matrices / Abraham Berman, Naomi Shaked-Monderer. |
title_full_unstemmed | Completely positive matrices / Abraham Berman, Naomi Shaked-Monderer. |
title_short | Completely positive matrices / |
title_sort | completely positive matrices |
topic | Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Matrices. MATHEMATICS Matrices. bisacsh Matrices fast Matrizes (álgebra) larpcal |
topic_facet | Matrices. MATHEMATICS Matrices. Matrices Matrizes (álgebra) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235624 |
work_keys_str_mv | AT bermanabraham completelypositivematrices AT shakedmonderernaomi completelypositivematrices |