Reasoning about theoretical entities /:
Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by exp...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J. :
World Scientific,
©2003.
|
Schriftenreihe: | Advances in logic ;
v. 3. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti- )reductionist. It should be required reading for every first-year graduate student in philosophy. |
Beschreibung: | 1 online resource (93 pages) |
Bibliographie: | Includes bibliographical references (pages 89-91) and indexes. |
ISBN: | 9789812795038 9812795030 1281935492 9781281935496 9786611935498 6611935495 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn262845443 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081020s2003 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d IDEBK |d OCLCQ |d E7B |d OCLCF |d OCLCO |d I9W |d NLGGC |d YDXCP |d OCLCQ |d VTS |d AGLDB |d STF |d LEAUB |d JBG |d UKAHL |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1162018845 |a 1241818636 |a 1300529363 | ||
020 | |a 9789812795038 |q (electronic bk.) | ||
020 | |a 9812795030 |q (electronic bk.) | ||
020 | |a 1281935492 | ||
020 | |a 9781281935496 | ||
020 | |a 9786611935498 | ||
020 | |a 6611935495 | ||
035 | |a (OCoLC)262845443 |z (OCoLC)1162018845 |z (OCoLC)1241818636 |z (OCoLC)1300529363 | ||
050 | 4 | |a QA9.4 |b .F67 2003eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Forster, T. E. |0 http://id.loc.gov/authorities/names/n91101848 | |
245 | 1 | 0 | |a Reasoning about theoretical entities / |c Thomas Forster. |
260 | |a River Edge, N.J. : |b World Scientific, |c ©2003. | ||
300 | |a 1 online resource (93 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Advances in logic ; |v v. 3 | |
504 | |a Includes bibliographical references (pages 89-91) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic. | |
520 | |a Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti- )reductionist. It should be required reading for every first-year graduate student in philosophy. | ||
546 | |a English. | ||
650 | 0 | |a Logic, Symbolic and mathematical. |0 http://id.loc.gov/authorities/subjects/sh85078115 | |
650 | 0 | |a Reductionism. |0 http://id.loc.gov/authorities/subjects/sh85112145 | |
650 | 0 | |a Cardinal numbers. |0 http://id.loc.gov/authorities/subjects/sh85093210 | |
650 | 6 | |a Logique symbolique et mathématique. | |
650 | 6 | |a Réductionnisme. | |
650 | 6 | |a Nombres cardinaux. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Cardinal numbers |2 fast | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Reductionism |2 fast | |
758 | |i has work: |a Reasoning about theoretical entities (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFHCFKYHmChBjWGxDq8bJP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Forster, T.E. |t Reasoning about theoretical entities. |d River Edge, N.J. : World Scientific, ©2003 |z 9812385673 |z 9789812385673 |w (DLC) 2003062114 |w (OCoLC)53038408 |
830 | 0 | |a Advances in logic ; |v v. 3. |0 http://id.loc.gov/authorities/names/n2001114820 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235609 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685154 | ||
938 | |a ebrary |b EBRY |n ebr10714051 | ||
938 | |a EBSCOhost |b EBSC |n 235609 | ||
938 | |a YBP Library Services |b YANK |n 2895739 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn262845443 |
---|---|
_version_ | 1816881679020589056 |
adam_text | |
any_adam_object | |
author | Forster, T. E. |
author_GND | http://id.loc.gov/authorities/names/n91101848 |
author_facet | Forster, T. E. |
author_role | |
author_sort | Forster, T. E. |
author_variant | t e f te tef |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.4 .F67 2003eb |
callnumber-search | QA9.4 .F67 2003eb |
callnumber-sort | QA 19.4 F67 42003EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic. |
ctrlnum | (OCoLC)262845443 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04600cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn262845443</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081020s2003 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">I9W</subfield><subfield code="d">NLGGC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">JBG</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1162018845</subfield><subfield code="a">1241818636</subfield><subfield code="a">1300529363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812795038</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812795030</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281935492</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281935496</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611935498</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611935495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)262845443</subfield><subfield code="z">(OCoLC)1162018845</subfield><subfield code="z">(OCoLC)1241818636</subfield><subfield code="z">(OCoLC)1300529363</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.4</subfield><subfield code="b">.F67 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forster, T. E.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91101848</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reasoning about theoretical entities /</subfield><subfield code="c">Thomas Forster.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (93 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in logic ;</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 89-91) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti- )reductionist. It should be required reading for every first-year graduate student in philosophy.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078115</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Reductionism.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112145</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cardinal numbers.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093210</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réductionnisme.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nombres cardinaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cardinal numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Reductionism</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Reasoning about theoretical entities (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFHCFKYHmChBjWGxDq8bJP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Forster, T.E.</subfield><subfield code="t">Reasoning about theoretical entities.</subfield><subfield code="d">River Edge, N.J. : World Scientific, ©2003</subfield><subfield code="z">9812385673</subfield><subfield code="z">9789812385673</subfield><subfield code="w">(DLC) 2003062114</subfield><subfield code="w">(OCoLC)53038408</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in logic ;</subfield><subfield code="v">v. 3.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001114820</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235609</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685154</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10714051</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235609</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2895739</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn262845443 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812795038 9812795030 1281935492 9781281935496 9786611935498 6611935495 |
language | English |
oclc_num | 262845443 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (93 pages) |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific, |
record_format | marc |
series | Advances in logic ; |
series2 | Advances in logic ; |
spelling | Forster, T. E. http://id.loc.gov/authorities/names/n91101848 Reasoning about theoretical entities / Thomas Forster. River Edge, N.J. : World Scientific, ©2003. 1 online resource (93 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Advances in logic ; v. 3 Includes bibliographical references (pages 89-91) and indexes. Print version record. 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic. Reductionism is one of those philosophical myths that are either enthusiastically embraced or wholeheartedly rejected. And, like all other philosophical myths, it rarely gets serious consideration. Reasoning About Theoretical Entities strives to give reductionism its day in court, as it were, by explicitly developing several versions of the reductionist project and assessing their merits within the framework of modern symbolic logic. Not since the days of Carnap's Aufbau has reductionism received such close attention (albeit in a necessarily restricted and regimented setting such as that of modern mathematical logic). As such this book fills a void in the philosophical literature and presents a challenge to every would-be (anti- )reductionist. It should be required reading for every first-year graduate student in philosophy. English. Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Reductionism. http://id.loc.gov/authorities/subjects/sh85112145 Cardinal numbers. http://id.loc.gov/authorities/subjects/sh85093210 Logique symbolique et mathématique. Réductionnisme. Nombres cardinaux. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Cardinal numbers fast Logic, Symbolic and mathematical fast Reductionism fast has work: Reasoning about theoretical entities (Text) https://id.oclc.org/worldcat/entity/E39PCFHCFKYHmChBjWGxDq8bJP https://id.oclc.org/worldcat/ontology/hasWork Print version: Forster, T.E. Reasoning about theoretical entities. River Edge, N.J. : World Scientific, ©2003 9812385673 9789812385673 (DLC) 2003062114 (OCoLC)53038408 Advances in logic ; v. 3. http://id.loc.gov/authorities/names/n2001114820 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235609 Volltext |
spellingShingle | Forster, T. E. Reasoning about theoretical entities / Advances in logic ; 1. Introduction. 1.1. Interpretations. 2. Definite descriptions -- 2.1. Formal definition of the interpretation. 2.2. Functions from singular descriptions. 2.3. Definite descriptions and modal realism -- 3. Virtual objects. 3.1. Congruence relations. 3.2. Extending the language. 3.3. Second-order and higher-order theories -- 4. Cardinal arithmetic. 4.1 The languages of set theory and arithmetic. 4.2 The canonical simulation. 4.3. Virtual illfounded sets. 5. Iterated virtuality in cardinal arithmetic. 5.1. Doubly virtual cardinals. 5.2. Multiply virtual cardinals. 5.3. Untyped invariant arithmetic. 5.4. Implementation-insensitivity. 5.5. Iterated virtuality and reflection -- 6. Ordinals. 6.1. The elementary theory of wellorderings. 6.2. The language of ordinal arithmetic. 6.3. Ordinals of wellorderings of sets of ordinals. 6.4. Implementations of ordinal arithmetic. Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Reductionism. http://id.loc.gov/authorities/subjects/sh85112145 Cardinal numbers. http://id.loc.gov/authorities/subjects/sh85093210 Logique symbolique et mathématique. Réductionnisme. Nombres cardinaux. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Cardinal numbers fast Logic, Symbolic and mathematical fast Reductionism fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85078115 http://id.loc.gov/authorities/subjects/sh85112145 http://id.loc.gov/authorities/subjects/sh85093210 |
title | Reasoning about theoretical entities / |
title_auth | Reasoning about theoretical entities / |
title_exact_search | Reasoning about theoretical entities / |
title_full | Reasoning about theoretical entities / Thomas Forster. |
title_fullStr | Reasoning about theoretical entities / Thomas Forster. |
title_full_unstemmed | Reasoning about theoretical entities / Thomas Forster. |
title_short | Reasoning about theoretical entities / |
title_sort | reasoning about theoretical entities |
topic | Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Reductionism. http://id.loc.gov/authorities/subjects/sh85112145 Cardinal numbers. http://id.loc.gov/authorities/subjects/sh85093210 Logique symbolique et mathématique. Réductionnisme. Nombres cardinaux. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Cardinal numbers fast Logic, Symbolic and mathematical fast Reductionism fast |
topic_facet | Logic, Symbolic and mathematical. Reductionism. Cardinal numbers. Logique symbolique et mathématique. Réductionnisme. Nombres cardinaux. MATHEMATICS Infinity. MATHEMATICS Logic. Cardinal numbers Logic, Symbolic and mathematical Reductionism |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235609 |
work_keys_str_mv | AT forsterte reasoningabouttheoreticalentities |