Dynamics and mission design near libration points.: Vol. IV, Advanced methods for triangular points /
The aim of this book is to explain, analyze and compute the kinds of motions that appear in an extended vicinity of the geometrically defined equilateral points of the Earth-Moon system, as a source of possible nominal orbits for future space missions. The methodology developed here is not specific...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, NJ :
World Scientific,
2001.
|
Schriftenreihe: | World Scientific monograph series in mathematics ;
v. 5. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The aim of this book is to explain, analyze and compute the kinds of motions that appear in an extended vicinity of the geometrically defined equilateral points of the Earth-Moon system, as a source of possible nominal orbits for future space missions. The methodology developed here is not specific to astrodynamics problems. The techniques are developed in such a way that they can be used to study problems that can be modeled by dynamical systems. Contents: Global Stability Zones Around the Triangular Libration Points; The Normal Form Around L 5 in the Three-dimensional RTBP; Normal Form of th. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789812794635 9812794638 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn262621383 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081016s2001 si a ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d MHW |d EBLCP |d OCLCQ |d NLGGC |d OCLCO |d STF |d OCLCQ |d VTS |d AGLDB |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9789812794635 |q (electronic bk.) | ||
020 | |a 9812794638 |q (electronic bk.) | ||
035 | |a (OCoLC)262621383 | ||
050 | 4 | |a QB362.T5 |b D96eb vol. 4 | |
072 | 7 | |a SCI |x 004000 |2 bisacsh | |
082 | 7 | |a 521/.3 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Dynamics and mission design near libration points. |n Vol. IV, |p Advanced methods for triangular points / |c G. Gómez [and others]. |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c 2001. | ||
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a World scientific monograph series in mathematics ; |v vol. 5 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a The aim of this book is to explain, analyze and compute the kinds of motions that appear in an extended vicinity of the geometrically defined equilateral points of the Earth-Moon system, as a source of possible nominal orbits for future space missions. The methodology developed here is not specific to astrodynamics problems. The techniques are developed in such a way that they can be used to study problems that can be modeled by dynamical systems. Contents: Global Stability Zones Around the Triangular Libration Points; The Normal Form Around L 5 in the Three-dimensional RTBP; Normal Form of th. | ||
505 | 0 | |a Introduction. 0.1. Detailed objectives. 0.2. Known results about the stability of L4,5. 0.3. Main difficulties of the problem -- ch. 1. Global stability zones around the triangular libration points. 1.1. Equations of motion. 1.2. Results for the restricted circular problem. 1.3. Simulations for the bicircular problem. 1.4. Results for the simulations using the JPL model. 1.5. Discussion and tentative explanations -- ch. 2. The normal form around L5 in the tree-dimensional RTBP. 2.1. Checks of the normal form -- ch. 3. Normal form of the bicircular model and related topics. 3.1. The equations of the bicircular problem. 3.2. Expansion of the Hamiltonian. 3.3. Cancelling the terms of order one. 3.4. Normal form to order two. 3.5. Normal form of terms of order higher than two. 3.6. A test concerning the normal form around the small periodic orbit near l5 in the bicircular problem. 3.7. On the computation of unstable two-dimensional Tori. 3.8. Big Tori and stability zones -- ch. 4. The quasi-periodic model. 4.1. The Lagrangian and the Hamiltonian. 4.2. Some useful expansions. 4.3. The fourier analysis -- ch. 5. Nominal paths and stability properties. 5.1. Introduction. 5.2. Idea of the resolution method. 5.3. The algebraic manipulator. 5.4. Results with the algebraic manipulator. 5.5. Numerical refinement. 5.6. The neighbourhood of the almost planar nominal paths -- ch. 6. Transfer to orbits in a vicinity of the Lagrangian points. 6.1. Computations of the transfer orbits. 6.2. Summary of the results. | |
650 | 0 | |a Three-body problem. |0 http://id.loc.gov/authorities/subjects/sh85135013 | |
650 | 0 | |a Lagrangian points. |0 http://id.loc.gov/authorities/subjects/sh85073966 | |
650 | 6 | |a Problème à trois corps. | |
650 | 6 | |a Points de Lagrange. | |
650 | 7 | |a SCIENCE |x Astronomy. |2 bisacsh | |
650 | 7 | |a Lagrangian points |2 fast | |
650 | 7 | |a Three-body problem |2 fast | |
650 | 7 | |a Sistemas dinâmicos. |2 larpcal | |
650 | 7 | |a Problemas de n-corpos. |2 larpcal | |
650 | 7 | |a Estabilidade. |2 larpcal | |
650 | 7 | |a Sistemas hamiltonianos. |2 larpcal | |
650 | 7 | |a Métodos de perturbação (sistemas dinâmicos) |2 larpcal | |
700 | 1 | |a Gómez, G. |q (Gerard) |1 https://id.oclc.org/worldcat/entity/E39PCjyDK6grq4g9WJmRBPqMCP |0 http://id.loc.gov/authorities/names/n00013779 | |
758 | |i has work: |a Dynamics and Mission Design near Libration Points (Online) (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGKrQfG3cHC7gJrJDJWtw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points. |d Singapore ; River Edge, NJ : World Scientific, 2001 |z 9810242107 |z 9789810242107 |w (DLC) 00043633 |w (OCoLC)44594017 |
830 | 0 | |a World Scientific monograph series in mathematics ; |v v. 5. |0 http://id.loc.gov/authorities/names/n99254802 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235922 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL1679697 | ||
938 | |a EBSCOhost |b EBSC |n 235922 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn262621383 |
---|---|
_version_ | 1816881678937751552 |
adam_text | |
any_adam_object | |
author2 | Gómez, G. (Gerard) |
author2_role | |
author2_variant | g g gg |
author_GND | http://id.loc.gov/authorities/names/n00013779 |
author_facet | Gómez, G. (Gerard) |
author_sort | Gómez, G. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QB362 |
callnumber-raw | QB362.T5 D96eb vol. 4 |
callnumber-search | QB362.T5 D96eb vol. 4 |
callnumber-sort | QB 3362 T5 D96 EB VOL 14 |
callnumber-subject | QB - Astronomy |
collection | ZDB-4-EBA |
contents | Introduction. 0.1. Detailed objectives. 0.2. Known results about the stability of L4,5. 0.3. Main difficulties of the problem -- ch. 1. Global stability zones around the triangular libration points. 1.1. Equations of motion. 1.2. Results for the restricted circular problem. 1.3. Simulations for the bicircular problem. 1.4. Results for the simulations using the JPL model. 1.5. Discussion and tentative explanations -- ch. 2. The normal form around L5 in the tree-dimensional RTBP. 2.1. Checks of the normal form -- ch. 3. Normal form of the bicircular model and related topics. 3.1. The equations of the bicircular problem. 3.2. Expansion of the Hamiltonian. 3.3. Cancelling the terms of order one. 3.4. Normal form to order two. 3.5. Normal form of terms of order higher than two. 3.6. A test concerning the normal form around the small periodic orbit near l5 in the bicircular problem. 3.7. On the computation of unstable two-dimensional Tori. 3.8. Big Tori and stability zones -- ch. 4. The quasi-periodic model. 4.1. The Lagrangian and the Hamiltonian. 4.2. Some useful expansions. 4.3. The fourier analysis -- ch. 5. Nominal paths and stability properties. 5.1. Introduction. 5.2. Idea of the resolution method. 5.3. The algebraic manipulator. 5.4. Results with the algebraic manipulator. 5.5. Numerical refinement. 5.6. The neighbourhood of the almost planar nominal paths -- ch. 6. Transfer to orbits in a vicinity of the Lagrangian points. 6.1. Computations of the transfer orbits. 6.2. Summary of the results. |
ctrlnum | (OCoLC)262621383 |
dewey-full | 521/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 521 - Celestial mechanics |
dewey-raw | 521/.3 |
dewey-search | 521/.3 |
dewey-sort | 3521 13 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04923cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn262621383</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081016s2001 si a ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812794635</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812794638</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)262621383</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QB362.T5</subfield><subfield code="b">D96eb vol. 4</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">521/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Dynamics and mission design near libration points.</subfield><subfield code="n">Vol. IV,</subfield><subfield code="p">Advanced methods for triangular points /</subfield><subfield code="c">G. Gómez [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">World scientific monograph series in mathematics ;</subfield><subfield code="v">vol. 5</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this book is to explain, analyze and compute the kinds of motions that appear in an extended vicinity of the geometrically defined equilateral points of the Earth-Moon system, as a source of possible nominal orbits for future space missions. The methodology developed here is not specific to astrodynamics problems. The techniques are developed in such a way that they can be used to study problems that can be modeled by dynamical systems. Contents: Global Stability Zones Around the Triangular Libration Points; The Normal Form Around L 5 in the Three-dimensional RTBP; Normal Form of th.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction. 0.1. Detailed objectives. 0.2. Known results about the stability of L4,5. 0.3. Main difficulties of the problem -- ch. 1. Global stability zones around the triangular libration points. 1.1. Equations of motion. 1.2. Results for the restricted circular problem. 1.3. Simulations for the bicircular problem. 1.4. Results for the simulations using the JPL model. 1.5. Discussion and tentative explanations -- ch. 2. The normal form around L5 in the tree-dimensional RTBP. 2.1. Checks of the normal form -- ch. 3. Normal form of the bicircular model and related topics. 3.1. The equations of the bicircular problem. 3.2. Expansion of the Hamiltonian. 3.3. Cancelling the terms of order one. 3.4. Normal form to order two. 3.5. Normal form of terms of order higher than two. 3.6. A test concerning the normal form around the small periodic orbit near l5 in the bicircular problem. 3.7. On the computation of unstable two-dimensional Tori. 3.8. Big Tori and stability zones -- ch. 4. The quasi-periodic model. 4.1. The Lagrangian and the Hamiltonian. 4.2. Some useful expansions. 4.3. The fourier analysis -- ch. 5. Nominal paths and stability properties. 5.1. Introduction. 5.2. Idea of the resolution method. 5.3. The algebraic manipulator. 5.4. Results with the algebraic manipulator. 5.5. Numerical refinement. 5.6. The neighbourhood of the almost planar nominal paths -- ch. 6. Transfer to orbits in a vicinity of the Lagrangian points. 6.1. Computations of the transfer orbits. 6.2. Summary of the results.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-body problem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85135013</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lagrangian points.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85073966</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problème à trois corps.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Points de Lagrange.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Astronomy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lagrangian points</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-body problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sistemas dinâmicos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problemas de n-corpos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estabilidade.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sistemas hamiltonianos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Métodos de perturbação (sistemas dinâmicos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gómez, G.</subfield><subfield code="q">(Gerard)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyDK6grq4g9WJmRBPqMCP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00013779</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Dynamics and Mission Design near Libration Points (Online) (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGKrQfG3cHC7gJrJDJWtw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, 2001</subfield><subfield code="z">9810242107</subfield><subfield code="z">9789810242107</subfield><subfield code="w">(DLC) 00043633</subfield><subfield code="w">(OCoLC)44594017</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">World Scientific monograph series in mathematics ;</subfield><subfield code="v">v. 5.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99254802</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235922</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1679697</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235922</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn262621383 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812794635 9812794638 |
language | English |
oclc_num | 262621383 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific, |
record_format | marc |
series | World Scientific monograph series in mathematics ; |
series2 | World scientific monograph series in mathematics ; |
spelling | Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points / G. Gómez [and others]. Singapore ; River Edge, NJ : World Scientific, 2001. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier World scientific monograph series in mathematics ; vol. 5 Includes bibliographical references. Print version record. The aim of this book is to explain, analyze and compute the kinds of motions that appear in an extended vicinity of the geometrically defined equilateral points of the Earth-Moon system, as a source of possible nominal orbits for future space missions. The methodology developed here is not specific to astrodynamics problems. The techniques are developed in such a way that they can be used to study problems that can be modeled by dynamical systems. Contents: Global Stability Zones Around the Triangular Libration Points; The Normal Form Around L 5 in the Three-dimensional RTBP; Normal Form of th. Introduction. 0.1. Detailed objectives. 0.2. Known results about the stability of L4,5. 0.3. Main difficulties of the problem -- ch. 1. Global stability zones around the triangular libration points. 1.1. Equations of motion. 1.2. Results for the restricted circular problem. 1.3. Simulations for the bicircular problem. 1.4. Results for the simulations using the JPL model. 1.5. Discussion and tentative explanations -- ch. 2. The normal form around L5 in the tree-dimensional RTBP. 2.1. Checks of the normal form -- ch. 3. Normal form of the bicircular model and related topics. 3.1. The equations of the bicircular problem. 3.2. Expansion of the Hamiltonian. 3.3. Cancelling the terms of order one. 3.4. Normal form to order two. 3.5. Normal form of terms of order higher than two. 3.6. A test concerning the normal form around the small periodic orbit near l5 in the bicircular problem. 3.7. On the computation of unstable two-dimensional Tori. 3.8. Big Tori and stability zones -- ch. 4. The quasi-periodic model. 4.1. The Lagrangian and the Hamiltonian. 4.2. Some useful expansions. 4.3. The fourier analysis -- ch. 5. Nominal paths and stability properties. 5.1. Introduction. 5.2. Idea of the resolution method. 5.3. The algebraic manipulator. 5.4. Results with the algebraic manipulator. 5.5. Numerical refinement. 5.6. The neighbourhood of the almost planar nominal paths -- ch. 6. Transfer to orbits in a vicinity of the Lagrangian points. 6.1. Computations of the transfer orbits. 6.2. Summary of the results. Three-body problem. http://id.loc.gov/authorities/subjects/sh85135013 Lagrangian points. http://id.loc.gov/authorities/subjects/sh85073966 Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. bisacsh Lagrangian points fast Three-body problem fast Sistemas dinâmicos. larpcal Problemas de n-corpos. larpcal Estabilidade. larpcal Sistemas hamiltonianos. larpcal Métodos de perturbação (sistemas dinâmicos) larpcal Gómez, G. (Gerard) https://id.oclc.org/worldcat/entity/E39PCjyDK6grq4g9WJmRBPqMCP http://id.loc.gov/authorities/names/n00013779 has work: Dynamics and Mission Design near Libration Points (Online) (Text) https://id.oclc.org/worldcat/entity/E39PCGKrQfG3cHC7gJrJDJWtw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points. Singapore ; River Edge, NJ : World Scientific, 2001 9810242107 9789810242107 (DLC) 00043633 (OCoLC)44594017 World Scientific monograph series in mathematics ; v. 5. http://id.loc.gov/authorities/names/n99254802 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235922 Volltext |
spellingShingle | Dynamics and mission design near libration points. World Scientific monograph series in mathematics ; Introduction. 0.1. Detailed objectives. 0.2. Known results about the stability of L4,5. 0.3. Main difficulties of the problem -- ch. 1. Global stability zones around the triangular libration points. 1.1. Equations of motion. 1.2. Results for the restricted circular problem. 1.3. Simulations for the bicircular problem. 1.4. Results for the simulations using the JPL model. 1.5. Discussion and tentative explanations -- ch. 2. The normal form around L5 in the tree-dimensional RTBP. 2.1. Checks of the normal form -- ch. 3. Normal form of the bicircular model and related topics. 3.1. The equations of the bicircular problem. 3.2. Expansion of the Hamiltonian. 3.3. Cancelling the terms of order one. 3.4. Normal form to order two. 3.5. Normal form of terms of order higher than two. 3.6. A test concerning the normal form around the small periodic orbit near l5 in the bicircular problem. 3.7. On the computation of unstable two-dimensional Tori. 3.8. Big Tori and stability zones -- ch. 4. The quasi-periodic model. 4.1. The Lagrangian and the Hamiltonian. 4.2. Some useful expansions. 4.3. The fourier analysis -- ch. 5. Nominal paths and stability properties. 5.1. Introduction. 5.2. Idea of the resolution method. 5.3. The algebraic manipulator. 5.4. Results with the algebraic manipulator. 5.5. Numerical refinement. 5.6. The neighbourhood of the almost planar nominal paths -- ch. 6. Transfer to orbits in a vicinity of the Lagrangian points. 6.1. Computations of the transfer orbits. 6.2. Summary of the results. Three-body problem. http://id.loc.gov/authorities/subjects/sh85135013 Lagrangian points. http://id.loc.gov/authorities/subjects/sh85073966 Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. bisacsh Lagrangian points fast Three-body problem fast Sistemas dinâmicos. larpcal Problemas de n-corpos. larpcal Estabilidade. larpcal Sistemas hamiltonianos. larpcal Métodos de perturbação (sistemas dinâmicos) larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85135013 http://id.loc.gov/authorities/subjects/sh85073966 |
title | Dynamics and mission design near libration points. |
title_auth | Dynamics and mission design near libration points. |
title_exact_search | Dynamics and mission design near libration points. |
title_full | Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points / G. Gómez [and others]. |
title_fullStr | Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points / G. Gómez [and others]. |
title_full_unstemmed | Dynamics and mission design near libration points. Vol. IV, Advanced methods for triangular points / G. Gómez [and others]. |
title_short | Dynamics and mission design near libration points. |
title_sort | dynamics and mission design near libration points advanced methods for triangular points |
topic | Three-body problem. http://id.loc.gov/authorities/subjects/sh85135013 Lagrangian points. http://id.loc.gov/authorities/subjects/sh85073966 Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. bisacsh Lagrangian points fast Three-body problem fast Sistemas dinâmicos. larpcal Problemas de n-corpos. larpcal Estabilidade. larpcal Sistemas hamiltonianos. larpcal Métodos de perturbação (sistemas dinâmicos) larpcal |
topic_facet | Three-body problem. Lagrangian points. Problème à trois corps. Points de Lagrange. SCIENCE Astronomy. Lagrangian points Three-body problem Sistemas dinâmicos. Problemas de n-corpos. Estabilidade. Sistemas hamiltonianos. Métodos de perturbação (sistemas dinâmicos) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235922 |
work_keys_str_mv | AT gomezg dynamicsandmissiondesignnearlibrationpointsvoliv |