Hecke's theory of modular forms and Dirichlet series /:
In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hacensack, NJ :
World Scientific,
2008.
|
Schriftenreihe: | Monographs in number theory.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers. This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments. |
Beschreibung: | Expanded version of lecture notes by B. Berndt based in turn on a series of lectures given by Erich Hecke in 1938. |
Beschreibung: | 1 online resource (ix, 137 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 129-134) and index. |
ISBN: | 9789812792372 9812792376 1281934089 9781281934086 9786611934088 6611934081 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn262621064 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 081016s2008 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d IDEBK |d E7B |d OCLCQ |d OCLCF |d OCLCQ |d NLGGC |d OCLCQ |d STF |d OCLCQ |d AZK |d AGLDB |d COCUF |d MOR |d PIFAG |d OCLCQ |d COO |d U3W |d WRM |d VTS |d NRAMU |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d M8D |d UKAHL |d HS0 |d UKCRE |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 646768781 |a 764501567 |a 961533848 |a 962630777 |a 988434303 |a 991998252 |a 1037709746 |a 1038571934 |a 1045501863 |a 1055363785 |a 1062882392 |a 1081265114 |a 1153513726 |a 1162546660 |a 1228543234 |a 1290099981 |a 1300573389 | ||
020 | |a 9789812792372 |q (electronic bk.) | ||
020 | |a 9812792376 |q (electronic bk.) | ||
020 | |a 1281934089 | ||
020 | |a 9781281934086 | ||
020 | |a 9786611934088 | ||
020 | |a 6611934081 | ||
020 | |z 9812706356 | ||
020 | |z 9789812706355 | ||
035 | |a (OCoLC)262621064 |z (OCoLC)646768781 |z (OCoLC)764501567 |z (OCoLC)961533848 |z (OCoLC)962630777 |z (OCoLC)988434303 |z (OCoLC)991998252 |z (OCoLC)1037709746 |z (OCoLC)1038571934 |z (OCoLC)1045501863 |z (OCoLC)1055363785 |z (OCoLC)1062882392 |z (OCoLC)1081265114 |z (OCoLC)1153513726 |z (OCoLC)1162546660 |z (OCoLC)1228543234 |z (OCoLC)1290099981 |z (OCoLC)1300573389 | ||
050 | 4 | |a QA295 |b .B483 2008eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
082 | 7 | |a 515/.243 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Berndt, Bruce C., |d 1939- |1 https://id.oclc.org/worldcat/entity/E39PBJmxYVjQ9dQJH3CTFb7rbd |0 http://id.loc.gov/authorities/names/n83126068 | |
245 | 1 | 0 | |a Hecke's theory of modular forms and Dirichlet series / |c Bruce C. Berndt, Marvin I. Knopp. |
260 | |a Hacensack, NJ : |b World Scientific, |c 2008. | ||
300 | |a 1 online resource (ix, 137 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Monographs in Number Theory | |
500 | |a Expanded version of lecture notes by B. Berndt based in turn on a series of lectures given by Erich Hecke in 1938. | ||
504 | |a Includes bibliographical references (pages 129-134) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction -- 2. The main correspondence theorem -- 3. A fundamental region -- 4. The case [symbol]> 2 -- 5. The case [symbol] <2 -- 6. The case [symbol] = 2 -- 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results -- 8. Identities equivalent to the functional equation and to the modular relation. | |
520 | |a In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers. This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments. | ||
546 | |a English. | ||
650 | 0 | |a Dirichlet series. |0 http://id.loc.gov/authorities/subjects/sh85120239 | |
650 | 0 | |a Forms (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85050839 | |
650 | 0 | |a Modular functions. |0 http://id.loc.gov/authorities/subjects/sh85052344 | |
650 | 0 | |a Hecke operators. |0 http://id.loc.gov/authorities/subjects/sh85059897 | |
650 | 6 | |a Séries de Dirichlet. | |
650 | 6 | |a Formes (Mathématiques) | |
650 | 6 | |a Fonctions modulaires. | |
650 | 6 | |a Opérateurs de Hecke. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a Dirichlet series |2 fast | |
650 | 7 | |a Forms (Mathematics) |2 fast | |
650 | 7 | |a Hecke operators |2 fast | |
650 | 7 | |a Modular functions |2 fast | |
700 | 1 | |a Hecke, Erich, |d 1887-1947. |1 https://id.oclc.org/worldcat/entity/E39PBJvhqv8dKVbPV9t7Fmh8md |0 http://id.loc.gov/authorities/names/n81012257 | |
700 | 1 | |a Knopp, Marvin Isadore, |d 1933- |1 https://id.oclc.org/worldcat/entity/E39PBJrCfbc4XGyCHTwTJkTfv3 |0 http://id.loc.gov/authorities/names/n82012315 | |
758 | |i has work: |a Hecke's theory of modular forms and Dirichlet series (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGy43QMtc7dmqhfDP7xPw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Berndt, Bruce C., 1939- |t Hecke's theory of modular forms and Dirichlet series. |d Hacensack, NJ : World Scientific, 2008 |z 9812706356 |z 9789812706355 |w (DLC) 2008530715 |w (OCoLC)171111118 |
830 | 0 | |a Monographs in number theory. |0 http://id.loc.gov/authorities/names/no2009064241 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236052 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685011 | ||
938 | |a ebrary |b EBRY |n ebr10255817 | ||
938 | |a EBSCOhost |b EBSC |n 236052 | ||
938 | |a YBP Library Services |b YANK |n 2891982 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn262621064 |
---|---|
_version_ | 1816881678932508673 |
adam_text | |
any_adam_object | |
author | Berndt, Bruce C., 1939- |
author2 | Hecke, Erich, 1887-1947 Knopp, Marvin Isadore, 1933- |
author2_role | |
author2_variant | e h eh m i k mi mik |
author_GND | http://id.loc.gov/authorities/names/n83126068 http://id.loc.gov/authorities/names/n81012257 http://id.loc.gov/authorities/names/n82012315 |
author_facet | Berndt, Bruce C., 1939- Hecke, Erich, 1887-1947 Knopp, Marvin Isadore, 1933- |
author_role | |
author_sort | Berndt, Bruce C., 1939- |
author_variant | b c b bc bcb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 .B483 2008eb |
callnumber-search | QA295 .B483 2008eb |
callnumber-sort | QA 3295 B483 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. The main correspondence theorem -- 3. A fundamental region -- 4. The case [symbol]> 2 -- 5. The case [symbol] <2 -- 6. The case [symbol] = 2 -- 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results -- 8. Identities equivalent to the functional equation and to the modular relation. |
ctrlnum | (OCoLC)262621064 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05094cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn262621064</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">081016s2008 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646768781</subfield><subfield code="a">764501567</subfield><subfield code="a">961533848</subfield><subfield code="a">962630777</subfield><subfield code="a">988434303</subfield><subfield code="a">991998252</subfield><subfield code="a">1037709746</subfield><subfield code="a">1038571934</subfield><subfield code="a">1045501863</subfield><subfield code="a">1055363785</subfield><subfield code="a">1062882392</subfield><subfield code="a">1081265114</subfield><subfield code="a">1153513726</subfield><subfield code="a">1162546660</subfield><subfield code="a">1228543234</subfield><subfield code="a">1290099981</subfield><subfield code="a">1300573389</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812792372</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812792376</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281934089</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281934086</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611934088</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611934081</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812706356</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812706355</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)262621064</subfield><subfield code="z">(OCoLC)646768781</subfield><subfield code="z">(OCoLC)764501567</subfield><subfield code="z">(OCoLC)961533848</subfield><subfield code="z">(OCoLC)962630777</subfield><subfield code="z">(OCoLC)988434303</subfield><subfield code="z">(OCoLC)991998252</subfield><subfield code="z">(OCoLC)1037709746</subfield><subfield code="z">(OCoLC)1038571934</subfield><subfield code="z">(OCoLC)1045501863</subfield><subfield code="z">(OCoLC)1055363785</subfield><subfield code="z">(OCoLC)1062882392</subfield><subfield code="z">(OCoLC)1081265114</subfield><subfield code="z">(OCoLC)1153513726</subfield><subfield code="z">(OCoLC)1162546660</subfield><subfield code="z">(OCoLC)1228543234</subfield><subfield code="z">(OCoLC)1290099981</subfield><subfield code="z">(OCoLC)1300573389</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA295</subfield><subfield code="b">.B483 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berndt, Bruce C.,</subfield><subfield code="d">1939-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJmxYVjQ9dQJH3CTFb7rbd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83126068</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hecke's theory of modular forms and Dirichlet series /</subfield><subfield code="c">Bruce C. Berndt, Marvin I. Knopp.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hacensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 137 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs in Number Theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Expanded version of lecture notes by B. Berndt based in turn on a series of lectures given by Erich Hecke in 1938.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 129-134) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. The main correspondence theorem -- 3. A fundamental region -- 4. The case [symbol]> 2 -- 5. The case [symbol] <2 -- 6. The case [symbol] = 2 -- 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results -- 8. Identities equivalent to the functional equation and to the modular relation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers. This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Dirichlet series.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120239</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forms (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85050839</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Modular functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052344</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hecke operators.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85059897</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Séries de Dirichlet.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Formes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions modulaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Opérateurs de Hecke.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dirichlet series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Forms (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hecke operators</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modular functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hecke, Erich,</subfield><subfield code="d">1887-1947.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvhqv8dKVbPV9t7Fmh8md</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81012257</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knopp, Marvin Isadore,</subfield><subfield code="d">1933-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrCfbc4XGyCHTwTJkTfv3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82012315</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hecke's theory of modular forms and Dirichlet series (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGy43QMtc7dmqhfDP7xPw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berndt, Bruce C., 1939-</subfield><subfield code="t">Hecke's theory of modular forms and Dirichlet series.</subfield><subfield code="d">Hacensack, NJ : World Scientific, 2008</subfield><subfield code="z">9812706356</subfield><subfield code="z">9789812706355</subfield><subfield code="w">(DLC) 2008530715</subfield><subfield code="w">(OCoLC)171111118</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs in number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009064241</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236052</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685011</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255817</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">236052</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2891982</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn262621064 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:33Z |
institution | BVB |
isbn | 9789812792372 9812792376 1281934089 9781281934086 9786611934088 6611934081 |
language | English |
oclc_num | 262621064 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 137 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific, |
record_format | marc |
series | Monographs in number theory. |
series2 | Monographs in Number Theory |
spelling | Berndt, Bruce C., 1939- https://id.oclc.org/worldcat/entity/E39PBJmxYVjQ9dQJH3CTFb7rbd http://id.loc.gov/authorities/names/n83126068 Hecke's theory of modular forms and Dirichlet series / Bruce C. Berndt, Marvin I. Knopp. Hacensack, NJ : World Scientific, 2008. 1 online resource (ix, 137 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Monographs in Number Theory Expanded version of lecture notes by B. Berndt based in turn on a series of lectures given by Erich Hecke in 1938. Includes bibliographical references (pages 129-134) and index. Print version record. 1. Introduction -- 2. The main correspondence theorem -- 3. A fundamental region -- 4. The case [symbol]> 2 -- 5. The case [symbol] <2 -- 6. The case [symbol] = 2 -- 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results -- 8. Identities equivalent to the functional equation and to the modular relation. In 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers. This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments. English. Dirichlet series. http://id.loc.gov/authorities/subjects/sh85120239 Forms (Mathematics) http://id.loc.gov/authorities/subjects/sh85050839 Modular functions. http://id.loc.gov/authorities/subjects/sh85052344 Hecke operators. http://id.loc.gov/authorities/subjects/sh85059897 Séries de Dirichlet. Formes (Mathématiques) Fonctions modulaires. Opérateurs de Hecke. MATHEMATICS Infinity. bisacsh Dirichlet series fast Forms (Mathematics) fast Hecke operators fast Modular functions fast Hecke, Erich, 1887-1947. https://id.oclc.org/worldcat/entity/E39PBJvhqv8dKVbPV9t7Fmh8md http://id.loc.gov/authorities/names/n81012257 Knopp, Marvin Isadore, 1933- https://id.oclc.org/worldcat/entity/E39PBJrCfbc4XGyCHTwTJkTfv3 http://id.loc.gov/authorities/names/n82012315 has work: Hecke's theory of modular forms and Dirichlet series (Text) https://id.oclc.org/worldcat/entity/E39PCGy43QMtc7dmqhfDP7xPw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Berndt, Bruce C., 1939- Hecke's theory of modular forms and Dirichlet series. Hacensack, NJ : World Scientific, 2008 9812706356 9789812706355 (DLC) 2008530715 (OCoLC)171111118 Monographs in number theory. http://id.loc.gov/authorities/names/no2009064241 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236052 Volltext |
spellingShingle | Berndt, Bruce C., 1939- Hecke's theory of modular forms and Dirichlet series / Monographs in number theory. 1. Introduction -- 2. The main correspondence theorem -- 3. A fundamental region -- 4. The case [symbol]> 2 -- 5. The case [symbol] <2 -- 6. The case [symbol] = 2 -- 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results -- 8. Identities equivalent to the functional equation and to the modular relation. Dirichlet series. http://id.loc.gov/authorities/subjects/sh85120239 Forms (Mathematics) http://id.loc.gov/authorities/subjects/sh85050839 Modular functions. http://id.loc.gov/authorities/subjects/sh85052344 Hecke operators. http://id.loc.gov/authorities/subjects/sh85059897 Séries de Dirichlet. Formes (Mathématiques) Fonctions modulaires. Opérateurs de Hecke. MATHEMATICS Infinity. bisacsh Dirichlet series fast Forms (Mathematics) fast Hecke operators fast Modular functions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85120239 http://id.loc.gov/authorities/subjects/sh85050839 http://id.loc.gov/authorities/subjects/sh85052344 http://id.loc.gov/authorities/subjects/sh85059897 |
title | Hecke's theory of modular forms and Dirichlet series / |
title_auth | Hecke's theory of modular forms and Dirichlet series / |
title_exact_search | Hecke's theory of modular forms and Dirichlet series / |
title_full | Hecke's theory of modular forms and Dirichlet series / Bruce C. Berndt, Marvin I. Knopp. |
title_fullStr | Hecke's theory of modular forms and Dirichlet series / Bruce C. Berndt, Marvin I. Knopp. |
title_full_unstemmed | Hecke's theory of modular forms and Dirichlet series / Bruce C. Berndt, Marvin I. Knopp. |
title_short | Hecke's theory of modular forms and Dirichlet series / |
title_sort | hecke s theory of modular forms and dirichlet series |
topic | Dirichlet series. http://id.loc.gov/authorities/subjects/sh85120239 Forms (Mathematics) http://id.loc.gov/authorities/subjects/sh85050839 Modular functions. http://id.loc.gov/authorities/subjects/sh85052344 Hecke operators. http://id.loc.gov/authorities/subjects/sh85059897 Séries de Dirichlet. Formes (Mathématiques) Fonctions modulaires. Opérateurs de Hecke. MATHEMATICS Infinity. bisacsh Dirichlet series fast Forms (Mathematics) fast Hecke operators fast Modular functions fast |
topic_facet | Dirichlet series. Forms (Mathematics) Modular functions. Hecke operators. Séries de Dirichlet. Formes (Mathématiques) Fonctions modulaires. Opérateurs de Hecke. MATHEMATICS Infinity. Dirichlet series Hecke operators Modular functions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236052 |
work_keys_str_mv | AT berndtbrucec heckestheoryofmodularformsanddirichletseries AT heckeerich heckestheoryofmodularformsanddirichletseries AT knoppmarvinisadore heckestheoryofmodularformsanddirichletseries |