Bursting :: the genesis of rhythm in the nervous system /

Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Coombes, Stephen, Bressloff, Paul C.
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hackensack, NJ : World Scientific Pub., ©2005.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states, such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modelling of bursting, with contributions from many of the leading researchers in the field.
Beschreibung:1 online resource (xvi, 401 pages) : illustrations
Bibliographie:Includes bibliographical references and index.
ISBN:9812703233
9789812703231
981256506X
9789812565068
1281899208
9781281899200
9786611899202
6611899200

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen