Circle-valued Morse theory /:
In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that top...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
De Gruyter,
©2006.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
32. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions. |
Beschreibung: | 1 online resource (ix, 454 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 437-444) and index. |
ISBN: | 3110197979 9783110197976 |
ISSN: | 0179-0986 ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn236337992 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070105s2006 gw a ob 001 0 eng d | ||
040 | |a CaPaEBR |b eng |e pn |c COCUF |d OCLCQ |d YDXCP |d N$T |d IDEBK |d OCLCQ |d DKDLA |d ADU |d E7B |d MHW |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d DEBSZ |d OCLCQ |d DEBBG |d AU@ |d OCLCQ |d EBLCP |d OCLCQ |d COO |d OCLCQ |d AZK |d LOA |d AGLDB |d OCLCQ |d COCUF |d UIU |d OCLCQ |d MOR |d PIFBR |d ZCU |d OCLCQ |d U3W |d D6H |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d CLU |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d UKCRE |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a 06,N38,0619 |2 dnb | ||
016 | 7 | |a 98099585X |2 DE-101 | |
019 | |a 183147749 |a 435620218 |a 475752207 |a 488499538 |a 615011565 |a 647668250 |a 722605548 |a 780883322 |a 888820687 |a 935264247 |a 961527424 |a 962594718 |a 965977710 |a 988442396 |a 992093916 |a 994448318 |a 1037704084 |a 1038666235 |a 1045578266 |a 1055367655 |a 1058023902 |a 1066689621 |a 1081191537 |a 1153456706 |a 1228543091 | ||
020 | |a 3110197979 | ||
020 | |a 9783110197976 | ||
020 | |z 9783110158076 |q (hd. bd.) | ||
020 | |z 3110158078 |q (hd. bd.) | ||
024 | 7 | |a 10.1515/9783110197976 |2 doi | |
035 | |a (OCoLC)236337992 |z (OCoLC)183147749 |z (OCoLC)435620218 |z (OCoLC)475752207 |z (OCoLC)488499538 |z (OCoLC)615011565 |z (OCoLC)647668250 |z (OCoLC)722605548 |z (OCoLC)780883322 |z (OCoLC)888820687 |z (OCoLC)935264247 |z (OCoLC)961527424 |z (OCoLC)962594718 |z (OCoLC)965977710 |z (OCoLC)988442396 |z (OCoLC)992093916 |z (OCoLC)994448318 |z (OCoLC)1037704084 |z (OCoLC)1038666235 |z (OCoLC)1045578266 |z (OCoLC)1055367655 |z (OCoLC)1058023902 |z (OCoLC)1066689621 |z (OCoLC)1081191537 |z (OCoLC)1153456706 |z (OCoLC)1228543091 | ||
050 | 4 | |a QA331 |b .P35 2006eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
072 | 7 | |a QA |2 lcco | |
082 | 7 | |a 514/.74 |2 22 | |
084 | |a SK 350 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Pajitnov, Andrei V. | |
245 | 1 | 0 | |a Circle-valued Morse theory / |c Andrei V. Pajitnov. |
260 | |a Berlin ; |a New York : |b De Gruyter, |c ©2006. | ||
300 | |a 1 online resource (ix, 454 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a De Gruyter studies in mathematics, |x 0179-0986 ; |v 32 | |
504 | |a Includes bibliographical references (pages 437-444) and index. | ||
520 | |a In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Introduction; Part 1Morse functions and vector fieldson manifolds; CHAPTER 1Vector fields and C0 topology; CHAPTER 2Morse functions and their gradients; CHAPTER 3Gradient flows of real-valued Morse functions; CHAPTER 4The Kupka-Smale transversality theory forgradient flows; CHAPTER 5Handles; CHAPTER 6The Morse complex of a Morse function; History and Sources; Part 3Cellular gradients.; CHAPTER 7Condition (C); CHAPTER 8Cellular gradients are C0-generic; CHAPTER 9Properties of cellular gradients; Sources; Part 4Circle-valued Morse maps and Novikov complexes. | |
546 | |a In English. | ||
650 | 0 | |a Morse theory. |0 http://id.loc.gov/authorities/subjects/sh87005621 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Théorie de Morse. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Morse theory |2 fast | |
776 | 0 | 8 | |i Print version: |a Pajitnov, Andrei V. |t Circle-valued Morse theory. |d Berlin ; New York : De Gruyter, ©2006 |z 9783110158076 |z 3110158078 |w (OCoLC)77548339 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 32. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281596 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25307503 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL314061 | ||
938 | |a EBSCOhost |b EBSC |n 281596 | ||
938 | |a YBP Library Services |b YANK |n 2741139 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn236337992 |
---|---|
_version_ | 1816881669579210753 |
adam_text | |
any_adam_object | |
author | Pajitnov, Andrei V. |
author_facet | Pajitnov, Andrei V. |
author_role | |
author_sort | Pajitnov, Andrei V. |
author_variant | a v p av avp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 .P35 2006eb |
callnumber-search | QA331 .P35 2006eb |
callnumber-sort | QA 3331 P35 42006EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
collection | ZDB-4-EBA |
contents | Preface; Introduction; Part 1Morse functions and vector fieldson manifolds; CHAPTER 1Vector fields and C0 topology; CHAPTER 2Morse functions and their gradients; CHAPTER 3Gradient flows of real-valued Morse functions; CHAPTER 4The Kupka-Smale transversality theory forgradient flows; CHAPTER 5Handles; CHAPTER 6The Morse complex of a Morse function; History and Sources; Part 3Cellular gradients.; CHAPTER 7Condition (C); CHAPTER 8Cellular gradients are C0-generic; CHAPTER 9Properties of cellular gradients; Sources; Part 4Circle-valued Morse maps and Novikov complexes. |
ctrlnum | (OCoLC)236337992 |
dewey-full | 514/.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.74 |
dewey-search | 514/.74 |
dewey-sort | 3514 274 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04382cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn236337992</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070105s2006 gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CLU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N38,0619</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98099585X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">183147749</subfield><subfield code="a">435620218</subfield><subfield code="a">475752207</subfield><subfield code="a">488499538</subfield><subfield code="a">615011565</subfield><subfield code="a">647668250</subfield><subfield code="a">722605548</subfield><subfield code="a">780883322</subfield><subfield code="a">888820687</subfield><subfield code="a">935264247</subfield><subfield code="a">961527424</subfield><subfield code="a">962594718</subfield><subfield code="a">965977710</subfield><subfield code="a">988442396</subfield><subfield code="a">992093916</subfield><subfield code="a">994448318</subfield><subfield code="a">1037704084</subfield><subfield code="a">1038666235</subfield><subfield code="a">1045578266</subfield><subfield code="a">1055367655</subfield><subfield code="a">1058023902</subfield><subfield code="a">1066689621</subfield><subfield code="a">1081191537</subfield><subfield code="a">1153456706</subfield><subfield code="a">1228543091</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110197979</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110197976</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110158076</subfield><subfield code="q">(hd. bd.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110158078</subfield><subfield code="q">(hd. bd.)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110197976</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)236337992</subfield><subfield code="z">(OCoLC)183147749</subfield><subfield code="z">(OCoLC)435620218</subfield><subfield code="z">(OCoLC)475752207</subfield><subfield code="z">(OCoLC)488499538</subfield><subfield code="z">(OCoLC)615011565</subfield><subfield code="z">(OCoLC)647668250</subfield><subfield code="z">(OCoLC)722605548</subfield><subfield code="z">(OCoLC)780883322</subfield><subfield code="z">(OCoLC)888820687</subfield><subfield code="z">(OCoLC)935264247</subfield><subfield code="z">(OCoLC)961527424</subfield><subfield code="z">(OCoLC)962594718</subfield><subfield code="z">(OCoLC)965977710</subfield><subfield code="z">(OCoLC)988442396</subfield><subfield code="z">(OCoLC)992093916</subfield><subfield code="z">(OCoLC)994448318</subfield><subfield code="z">(OCoLC)1037704084</subfield><subfield code="z">(OCoLC)1038666235</subfield><subfield code="z">(OCoLC)1045578266</subfield><subfield code="z">(OCoLC)1055367655</subfield><subfield code="z">(OCoLC)1058023902</subfield><subfield code="z">(OCoLC)1066689621</subfield><subfield code="z">(OCoLC)1081191537</subfield><subfield code="z">(OCoLC)1153456706</subfield><subfield code="z">(OCoLC)1228543091</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331</subfield><subfield code="b">.P35 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pajitnov, Andrei V.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Circle-valued Morse theory /</subfield><subfield code="c">Andrei V. Pajitnov.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 454 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics,</subfield><subfield code="x">0179-0986 ;</subfield><subfield code="v">32</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 437-444) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Introduction; Part 1Morse functions and vector fieldson manifolds; CHAPTER 1Vector fields and C0 topology; CHAPTER 2Morse functions and their gradients; CHAPTER 3Gradient flows of real-valued Morse functions; CHAPTER 4The Kupka-Smale transversality theory forgradient flows; CHAPTER 5Handles; CHAPTER 6The Morse complex of a Morse function; History and Sources; Part 3Cellular gradients.; CHAPTER 7Condition (C); CHAPTER 8Cellular gradients are C0-generic; CHAPTER 9Properties of cellular gradients; Sources; Part 4Circle-valued Morse maps and Novikov complexes.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Morse theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87005621</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de Morse.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morse theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Pajitnov, Andrei V.</subfield><subfield code="t">Circle-valued Morse theory.</subfield><subfield code="d">Berlin ; New York : De Gruyter, ©2006</subfield><subfield code="z">9783110158076</subfield><subfield code="z">3110158078</subfield><subfield code="w">(OCoLC)77548339</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">32.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281596</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25307503</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL314061</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">281596</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2741139</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn236337992 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:24Z |
institution | BVB |
isbn | 3110197979 9783110197976 |
issn | 0179-0986 ; |
language | English |
oclc_num | 236337992 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 454 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics, |
spelling | Pajitnov, Andrei V. Circle-valued Morse theory / Andrei V. Pajitnov. Berlin ; New York : De Gruyter, ©2006. 1 online resource (ix, 454 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file De Gruyter studies in mathematics, 0179-0986 ; 32 Includes bibliographical references (pages 437-444) and index. In 1927, M Morse discovered that the number of critical points of a smooth function on a manifold is closely related to the topology of the manifold. This became a starting point of the Morse theory. This book aims to give a systematic treatment of the geometric foundations of a subfield of that topic, the circle-valued Morse functions. Print version record. Preface; Introduction; Part 1Morse functions and vector fieldson manifolds; CHAPTER 1Vector fields and C0 topology; CHAPTER 2Morse functions and their gradients; CHAPTER 3Gradient flows of real-valued Morse functions; CHAPTER 4The Kupka-Smale transversality theory forgradient flows; CHAPTER 5Handles; CHAPTER 6The Morse complex of a Morse function; History and Sources; Part 3Cellular gradients.; CHAPTER 7Condition (C); CHAPTER 8Cellular gradients are C0-generic; CHAPTER 9Properties of cellular gradients; Sources; Part 4Circle-valued Morse maps and Novikov complexes. In English. Morse theory. http://id.loc.gov/authorities/subjects/sh87005621 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Théorie de Morse. Variétés (Mathématiques) MATHEMATICS Topology. bisacsh Manifolds (Mathematics) fast Morse theory fast Print version: Pajitnov, Andrei V. Circle-valued Morse theory. Berlin ; New York : De Gruyter, ©2006 9783110158076 3110158078 (OCoLC)77548339 De Gruyter studies in mathematics ; 32. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281596 Volltext |
spellingShingle | Pajitnov, Andrei V. Circle-valued Morse theory / De Gruyter studies in mathematics ; Preface; Introduction; Part 1Morse functions and vector fieldson manifolds; CHAPTER 1Vector fields and C0 topology; CHAPTER 2Morse functions and their gradients; CHAPTER 3Gradient flows of real-valued Morse functions; CHAPTER 4The Kupka-Smale transversality theory forgradient flows; CHAPTER 5Handles; CHAPTER 6The Morse complex of a Morse function; History and Sources; Part 3Cellular gradients.; CHAPTER 7Condition (C); CHAPTER 8Cellular gradients are C0-generic; CHAPTER 9Properties of cellular gradients; Sources; Part 4Circle-valued Morse maps and Novikov complexes. Morse theory. http://id.loc.gov/authorities/subjects/sh87005621 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Théorie de Morse. Variétés (Mathématiques) MATHEMATICS Topology. bisacsh Manifolds (Mathematics) fast Morse theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh87005621 http://id.loc.gov/authorities/subjects/sh85080549 |
title | Circle-valued Morse theory / |
title_auth | Circle-valued Morse theory / |
title_exact_search | Circle-valued Morse theory / |
title_full | Circle-valued Morse theory / Andrei V. Pajitnov. |
title_fullStr | Circle-valued Morse theory / Andrei V. Pajitnov. |
title_full_unstemmed | Circle-valued Morse theory / Andrei V. Pajitnov. |
title_short | Circle-valued Morse theory / |
title_sort | circle valued morse theory |
topic | Morse theory. http://id.loc.gov/authorities/subjects/sh87005621 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Théorie de Morse. Variétés (Mathématiques) MATHEMATICS Topology. bisacsh Manifolds (Mathematics) fast Morse theory fast |
topic_facet | Morse theory. Manifolds (Mathematics) Théorie de Morse. Variétés (Mathématiques) MATHEMATICS Topology. Morse theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281596 |
work_keys_str_mv | AT pajitnovandreiv circlevaluedmorsetheory |