Trigonometric sums in number theory and analysis /:
The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investiga...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English Russian |
Veröffentlicht: |
Berlin ; New York :
Walter de Gruyter,
©2004.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
39. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers. |
Beschreibung: | 1 online resource (x, 554 pages) |
Bibliographie: | Includes bibliographical references (pages 539-551) and index. |
ISBN: | 9783110197983 3110197987 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn232160057 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 040910s2004 gw ob 001 0 eng d | ||
040 | |a IOD |b eng |e pn |c IOD |d CUY |d OCLCQ |d N$T |d YDXCP |d E7B |d OCLCQ |d MHW |d OCLCQ |d OCLCF |d OCLCQ |d OCLCO |d DEBSZ |d OCLCQ |d EBLCP |d OCLCQ |d COO |d LOA |d AGLDB |d UIU |d MOR |d PIFBR |d ZCU |d MERUC |d OCLCQ |d U3W |d OCLCA |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d CRU |d ICG |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d AJS |d TUHNV |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL | ||
016 | 7 | |z 972284702 |2 DE-101 | |
019 | |a 183147488 |a 416480856 |a 647669351 |a 1243587054 |a 1252728253 | ||
020 | |a 9783110197983 |q (electronic bk.) | ||
020 | |a 3110197987 |q (electronic bk.) | ||
020 | |z 3110162660 |q (cloth ; |q alk. paper) | ||
024 | 7 | |a 10.1515/9783110197983 |2 doi | |
035 | |a (OCoLC)232160057 |z (OCoLC)183147488 |z (OCoLC)416480856 |z (OCoLC)647669351 |z (OCoLC)1243587054 |z (OCoLC)1252728253 | ||
041 | 1 | |a eng |h rus | |
050 | 4 | |a QA246.8.T75 |b A75 2004eb | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.7 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Arkhipov, Gennadiĭ Ivanovich. |0 http://id.loc.gov/authorities/names/n80107975 | |
240 | 1 | 0 | |a Teorii︠a︡ kratnykh trigonometricheskikh summ. |l English |
245 | 1 | 0 | |a Trigonometric sums in number theory and analysis / |c by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba. |
260 | |a Berlin ; |a New York : |b Walter de Gruyter, |c ©2004. | ||
300 | |a 1 online resource (x, 554 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v 39 | |
504 | |a Includes bibliographical references (pages 539-551) and index. | ||
505 | 0 | |a Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers. | |
520 | |a The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Trigonometric sums. |0 http://id.loc.gov/authorities/subjects/sh85137517 | |
650 | 6 | |a Sommes trigonométriques. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Trigonometric sums |2 fast | |
700 | 1 | |a Chubarikov, V. N. |q (Vladimir Nikolaevich), |d 1951- |1 https://id.oclc.org/worldcat/entity/E39PBJth4jhKrqYvDB6YQpFVG3 | |
700 | 1 | |a Karat︠s︡uba, Anatoliĭ Alekseevich. |0 http://id.loc.gov/authorities/names/n80106990 | |
758 | |i has work: |a Trigonometric sums in number theory and analysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG699MpGbPvkpxdXhHM4WP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Arkhipov, Gennadiĭ Ivanovich. |s Teorii︠a︡ kratnykh trigonometricheskikh summ. English. |t Trigonometric sums in number theory and analysis. |d Berlin ; New York : Walter de Gruyter, ©2004 |w (DLC) 2004021280 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 39. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274365 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Internet Archive |b INAR |n trigonometricsum0000arkh | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25307504 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL314062 | ||
938 | |a EBSCOhost |b EBSC |n 274365 | ||
938 | |a YBP Library Services |b YANK |n 8872495 | ||
938 | |a YBP Library Services |b YANK |n 2740743 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn232160057 |
---|---|
_version_ | 1816881667760979968 |
adam_text | |
any_adam_object | |
author | Arkhipov, Gennadiĭ Ivanovich |
author2 | Chubarikov, V. N. (Vladimir Nikolaevich), 1951- Karat︠s︡uba, Anatoliĭ Alekseevich |
author2_role | |
author2_variant | v n c vn vnc a a k aa aak |
author_GND | http://id.loc.gov/authorities/names/n80107975 http://id.loc.gov/authorities/names/n80106990 |
author_facet | Arkhipov, Gennadiĭ Ivanovich Chubarikov, V. N. (Vladimir Nikolaevich), 1951- Karat︠s︡uba, Anatoliĭ Alekseevich |
author_role | |
author_sort | Arkhipov, Gennadiĭ Ivanovich |
author_variant | g i a gi gia |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA246 |
callnumber-raw | QA246.8.T75 A75 2004eb |
callnumber-search | QA246.8.T75 A75 2004eb |
callnumber-sort | QA 3246.8 T75 A75 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers. |
ctrlnum | (OCoLC)232160057 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04456cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn232160057</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">040910s2004 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IOD</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IOD</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UIU</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCA</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">TUHNV</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">972284702</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">183147488</subfield><subfield code="a">416480856</subfield><subfield code="a">647669351</subfield><subfield code="a">1243587054</subfield><subfield code="a">1252728253</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110197983</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110197987</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110162660</subfield><subfield code="q">(cloth ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110197983</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)232160057</subfield><subfield code="z">(OCoLC)183147488</subfield><subfield code="z">(OCoLC)416480856</subfield><subfield code="z">(OCoLC)647669351</subfield><subfield code="z">(OCoLC)1243587054</subfield><subfield code="z">(OCoLC)1252728253</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA246.8.T75</subfield><subfield code="b">A75 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arkhipov, Gennadiĭ Ivanovich.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80107975</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Teorii︠a︡ kratnykh trigonometricheskikh summ.</subfield><subfield code="l">English</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Trigonometric sums in number theory and analysis /</subfield><subfield code="c">by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 554 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">39</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 539-551) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Trigonometric sums.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85137517</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sommes trigonométriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Trigonometric sums</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chubarikov, V. N.</subfield><subfield code="q">(Vladimir Nikolaevich),</subfield><subfield code="d">1951-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJth4jhKrqYvDB6YQpFVG3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karat︠s︡uba, Anatoliĭ Alekseevich.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80106990</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Trigonometric sums in number theory and analysis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG699MpGbPvkpxdXhHM4WP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Arkhipov, Gennadiĭ Ivanovich.</subfield><subfield code="s">Teorii︠a︡ kratnykh trigonometricheskikh summ. English.</subfield><subfield code="t">Trigonometric sums in number theory and analysis.</subfield><subfield code="d">Berlin ; New York : Walter de Gruyter, ©2004</subfield><subfield code="w">(DLC) 2004021280</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">39.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274365</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">trigonometricsum0000arkh</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25307504</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL314062</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">274365</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8872495</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2740743</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn232160057 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:22Z |
institution | BVB |
isbn | 9783110197983 3110197987 |
language | English Russian |
oclc_num | 232160057 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 554 pages) |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Walter de Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics ; |
spelling | Arkhipov, Gennadiĭ Ivanovich. http://id.loc.gov/authorities/names/n80107975 Teorii︠a︡ kratnykh trigonometricheskikh summ. English Trigonometric sums in number theory and analysis / by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba. Berlin ; New York : Walter de Gruyter, ©2004. 1 online resource (x, 554 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter expositions in mathematics ; 39 Includes bibliographical references (pages 539-551) and index. Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers. The book presents the theory of multiple trigonometric sums constructed by the authors. Following a unified approach, the authors obtain estimates for these sums similar to the classical I.M. Vinogradov's estimates and use them to solve several problems in analytic number theory. They investigate trigonometric integrals, which are often encountered in physics, mathematical statistics, and analysis, and present purely arithmetic results concerning the solvability of equations in integers. Print version record. Trigonometric sums. http://id.loc.gov/authorities/subjects/sh85137517 Sommes trigonométriques. MATHEMATICS Number Theory. bisacsh Trigonometric sums fast Chubarikov, V. N. (Vladimir Nikolaevich), 1951- https://id.oclc.org/worldcat/entity/E39PBJth4jhKrqYvDB6YQpFVG3 Karat︠s︡uba, Anatoliĭ Alekseevich. http://id.loc.gov/authorities/names/n80106990 has work: Trigonometric sums in number theory and analysis (Text) https://id.oclc.org/worldcat/entity/E39PCG699MpGbPvkpxdXhHM4WP https://id.oclc.org/worldcat/ontology/hasWork Print version: Arkhipov, Gennadiĭ Ivanovich. Teorii︠a︡ kratnykh trigonometricheskikh summ. English. Trigonometric sums in number theory and analysis. Berlin ; New York : Walter de Gruyter, ©2004 (DLC) 2004021280 De Gruyter expositions in mathematics ; 39. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274365 Volltext |
spellingShingle | Arkhipov, Gennadiĭ Ivanovich Trigonometric sums in number theory and analysis / De Gruyter expositions in mathematics ; Preface; Basic Notation; Contents; Introduction; Chapter 1Trigonometric integrals; Chapter 2Rational trigonometric sums; Chapter 3Weyl sums; 4.1 The mean value theorem for the multiple trigonometricsum with equivalent variables of summation; Chapter 5Estimates for multiple trigonometric sums; Chapter 6Several applications; Chapter 7Special cases of the theory of multipletrigonometric sums; Chapter 8The Hilbert-Kamke problem and itsgeneralizations; Chapter 9The p-adic method in three problemsof number theory; Chapter 10Estimates of multiple trigonometric sums withprime numbers. Trigonometric sums. http://id.loc.gov/authorities/subjects/sh85137517 Sommes trigonométriques. MATHEMATICS Number Theory. bisacsh Trigonometric sums fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85137517 |
title | Trigonometric sums in number theory and analysis / |
title_alt | Teorii︠a︡ kratnykh trigonometricheskikh summ. |
title_auth | Trigonometric sums in number theory and analysis / |
title_exact_search | Trigonometric sums in number theory and analysis / |
title_full | Trigonometric sums in number theory and analysis / by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba. |
title_fullStr | Trigonometric sums in number theory and analysis / by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba. |
title_full_unstemmed | Trigonometric sums in number theory and analysis / by G.I. Arkhipov, V.N. Chubarikov, A.A. Karatsuba. |
title_short | Trigonometric sums in number theory and analysis / |
title_sort | trigonometric sums in number theory and analysis |
topic | Trigonometric sums. http://id.loc.gov/authorities/subjects/sh85137517 Sommes trigonométriques. MATHEMATICS Number Theory. bisacsh Trigonometric sums fast |
topic_facet | Trigonometric sums. Sommes trigonométriques. MATHEMATICS Number Theory. Trigonometric sums |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274365 |
work_keys_str_mv | AT arkhipovgennadiiivanovich teoriiakratnykhtrigonometricheskikhsumm AT chubarikovvn teoriiakratnykhtrigonometricheskikhsumm AT karatsubaanatoliialekseevich teoriiakratnykhtrigonometricheskikhsumm AT arkhipovgennadiiivanovich trigonometricsumsinnumbertheoryandanalysis AT chubarikovvn trigonometricsumsinnumbertheoryandanalysis AT karatsubaanatoliialekseevich trigonometricsumsinnumbertheoryandanalysis |