Hypermodels in mathematical finance :: modelling via infinitesimal analysis /
At the beginning of the new millennium, two unstoppable processes aretaking place in the world: (1) globalization of the economy; (2)information revolution. As a consequence, there is greaterparticipation of the world population in capital market investment, such as bonds and stocks and their deriva...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J. :
World Scientific,
©2003.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | At the beginning of the new millennium, two unstoppable processes aretaking place in the world: (1) globalization of the economy; (2)information revolution. As a consequence, there is greaterparticipation of the world population in capital market investment, such as bonds and stocks and their derivatives. |
Beschreibung: | 1 online resource (xiii, 298 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 289-294) and index. |
ISBN: | 9812564527 9789812564528 9789810244286 9810244282 1281876909 9781281876904 9786611876906 6611876901 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn228115550 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 030415s2003 njua ob 001 0 eng d | ||
040 | |a Nz |b eng |e pn |c UV0 |d OCLCQ |d N$T |d YDXCP |d IDEBK |d OCLCQ |d DKDLA |d ADU |d E7B |d OCLCQ |d MERUC |d OCLCO |d OCLCQ |d OCLCF |d OCLCO |d OCLCQ |d OCLCO |d EBLCP |d MHW |d OCLCO |d OCLCQ |d AZK |d OCLCO |d OCLCQ |d COCUF |d AGLDB |d MOR |d PIFBR |d ZCU |d OCLCQ |d UAB |d OCLCQ |d K6U |d JBG |d OCLCQ |d U3W |d STF |d WRM |d VNS |d VTS |d NRAMU |d ICG |d VT2 |d OCLCQ |d G3B |d DKC |d OCLCQ |d UKAHL |d S9I |d UKCRE |d VLY |d OCLCQ |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d CGU | ||
019 | |a 60716329 |a 149500458 |a 475194440 |a 475454154 |a 475941311 |a 614770311 |a 646733913 |a 722370532 |a 748530930 |a 815743352 |a 888541720 |a 936902677 |a 961659481 |a 962574069 |a 988464554 |a 991913808 |a 1037726392 |a 1038667500 |a 1045498260 |a 1055382274 |a 1081296254 |a 1153508643 |a 1162456771 |a 1228605504 |a 1241773495 |a 1290073640 |a 1300565779 | ||
020 | |a 9812564527 |q (electronic bk.) | ||
020 | |a 9789812564528 |q (electronic bk.) | ||
020 | |a 9789810244286 | ||
020 | |a 9810244282 | ||
020 | |a 1281876909 | ||
020 | |a 9781281876904 | ||
020 | |a 9786611876906 | ||
020 | |a 6611876901 | ||
020 | |z 9810244282 | ||
035 | |a (OCoLC)228115550 |z (OCoLC)60716329 |z (OCoLC)149500458 |z (OCoLC)475194440 |z (OCoLC)475454154 |z (OCoLC)475941311 |z (OCoLC)614770311 |z (OCoLC)646733913 |z (OCoLC)722370532 |z (OCoLC)748530930 |z (OCoLC)815743352 |z (OCoLC)888541720 |z (OCoLC)936902677 |z (OCoLC)961659481 |z (OCoLC)962574069 |z (OCoLC)988464554 |z (OCoLC)991913808 |z (OCoLC)1037726392 |z (OCoLC)1038667500 |z (OCoLC)1045498260 |z (OCoLC)1055382274 |z (OCoLC)1081296254 |z (OCoLC)1153508643 |z (OCoLC)1162456771 |z (OCoLC)1228605504 |z (OCoLC)1241773495 |z (OCoLC)1290073640 |z (OCoLC)1300565779 | ||
050 | 4 | |a HG4515.2 |b .N4 2003eb | |
072 | 7 | |a BUS |x 036000 |2 bisacsh | |
072 | 7 | |a PBV |2 bicssc | |
082 | 7 | |a 332.6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ng, Siu-Ah. |1 https://id.oclc.org/worldcat/entity/E39PCjB43KhJxBPTrKJgCq4xrC |0 http://id.loc.gov/authorities/names/no2003055658 | |
245 | 1 | 0 | |a Hypermodels in mathematical finance : |b modelling via infinitesimal analysis / |c Siu-Ah Ng. |
260 | |a River Edge, N.J. : |b World Scientific, |c ©2003. | ||
300 | |a 1 online resource (xiii, 298 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 289-294) and index. | ||
505 | 0 | |a Cover -- Preface -- Contents -- Notation and Convention -- Chapter 1 Basic Concepts and Practice in Finance -- 1.1 Introducing mathematical finance -- 1.2 Basic securities -- 1.2.1 Stocks -- 1.2.2 Bonds -- 1.2.3 Others: bank accounts, currencies and commodities -- 1.3 Derivative securities -- 1.3.1 Options -- 1.3.2 Other derivative securities -- 1.4 Theory and practice -- Chapter 2 Infinitesimal Analysis and Hypermodels -- 2.1 Motivations -- 2.2 Hypermodels and analysis -- Chapter 3 Absence of Arbitrage -- 3.1 Introduction -- 3.2 Absence of arbitrage and the binary tree hypermodel -- 3.2.1 A mini-model -- 3.2.2 Binary tree model -- 3.2.3 Binary tree hypermodel -- 3.2.4 Finiteness of stock prices -- 3.2.5 Risk-neutral measure for binary tree hypermodel -- 3.3 Black-Scholes type PDE from virtually arbitrage-free -- 3.3.1 Virtually arbitrage free -- Chapter 4 Explicit Option Pricing -- 4.1 From hypermodel to PDE -- 4.1.1 Barrier conditions for derivative claims -- 4.1.2 Tangible price processes -- 4.1.3 Differential equations in a hypermodel -- 4.1.4 Black-Scholes type PDE -- 4.2 Pricing options explicitly -- 4.2.1 The classical Black-Scholes formula -- 4.3 The barrier option -- 4.4 The American option -- Chapter 5 Pricing with Binary Tree Hypermodels -- 5.1 Hypermodels for the Cox-Ross-Rubinstein approach -- 5.2 The CRR matrix and Examples -- Chapter 6 Further Applications -- 6.1 Sensitivity analysis -- 6.1.1 The Greeks -- 6.1.2 Computing the Greeks from translating -- 6.2 Implied volatility -- 6.3 Term structure of interest rates -- Chapter 7 The Mathematics of Hypermodels -- 7.1 Mathematical logic and Classical Hyperanalysis -- 7.1.1 Logic and hypermodels *R -- 7.1.2 Construction of *R using the compactness theorem -- 7.1.3 Construction of *R using ultrapowers -- 7.1.4 Some basic properties of hypermodel *R -- 7.1.5 Hypermodels of R in richer languages -- 7.1.6 Some examples -- 7.1.7 References -- 7.2 The hyperuniverse -- 7.2.1 Doing mathematics in the language of set theory -- 7.2.2 Hyperuniverse and the hyperextension -- 7.2.3 The existence of the hyperextension -- 7.2.4 Applications and examples -- 7.2.5 References -- 7.3 Hyperanalysis of probability -- 7.3.1 The Loeb measure construction -- 7.3.2 Loeb integration theory -- 7.3.3 Some examples -- 7.4 Hypermodels of Brownian Motion -- 7.4.1 Anderson's discrete hypermodel of Brownian motion -- 7.4.2 Some * continuous hypermodels of Brownian motion -- 7.4.3 Some examples -- 7.5 Itô Integral and Stochastic Differential Equations -- 7.5.1 Some general remarks -- 7.5.2 Wiener integral and Itô integral -- 7.5.3 Itô's lemma and the Stratonovitch integral -- 7.6 Solving Stochastic differential equations -- 7.7 Malliavin calculus -- 7.8 White noise analysis -- 7.9 Universality and homogeneity properties of hyperfinite models -- Appendix. | |
588 | 0 | |a Print version record. | |
520 | |a At the beginning of the new millennium, two unstoppable processes aretaking place in the world: (1) globalization of the economy; (2)information revolution. As a consequence, there is greaterparticipation of the world population in capital market investment, such as bonds and stocks and their derivatives. | ||
546 | |a English. | ||
650 | 0 | |a Investments |x Mathematical models. |0 http://id.loc.gov/authorities/subjects/sh85067718 | |
650 | 0 | |a Securities |x Mathematical models. | |
650 | 0 | |a Risk management |x Mathematical models. | |
650 | 6 | |a Investissements |x Modèles mathématiques. | |
650 | 6 | |a Gestion du risque |x Modèles mathématiques. | |
650 | 7 | |a BUSINESS & ECONOMICS |x Investments & Securities |x General. |2 bisacsh | |
650 | 7 | |a Investments |x Mathematical models |2 fast | |
650 | 7 | |a Risk management |x Mathematical models |2 fast | |
650 | 7 | |a Securities |x Mathematical models |2 fast | |
758 | |i has work: |a Hypermodels in mathematical finance (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGCJGC4gCxvH6k333jh7f3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ng, Siu-Ah. |t Hypermodels in mathematical finance. |d River Edge, N.J. : World Scientific, ©2003 |w (DLC) 52066471 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=134085 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=134085 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH21190638 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL234370 | ||
938 | |a EBSCOhost |b EBSC |n 134085 | ||
938 | |a YBP Library Services |b YANK |n 2405961 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn228115550 |
---|---|
_version_ | 1829094622604820480 |
adam_text | |
any_adam_object | |
author | Ng, Siu-Ah |
author_GND | http://id.loc.gov/authorities/names/no2003055658 |
author_facet | Ng, Siu-Ah |
author_role | |
author_sort | Ng, Siu-Ah |
author_variant | s a n san |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | H - Social Science |
callnumber-label | HG4515 |
callnumber-raw | HG4515.2 .N4 2003eb |
callnumber-search | HG4515.2 .N4 2003eb |
callnumber-sort | HG 44515.2 N4 42003EB |
callnumber-subject | HG - Finance |
collection | ZDB-4-EBA |
contents | Cover -- Preface -- Contents -- Notation and Convention -- Chapter 1 Basic Concepts and Practice in Finance -- 1.1 Introducing mathematical finance -- 1.2 Basic securities -- 1.2.1 Stocks -- 1.2.2 Bonds -- 1.2.3 Others: bank accounts, currencies and commodities -- 1.3 Derivative securities -- 1.3.1 Options -- 1.3.2 Other derivative securities -- 1.4 Theory and practice -- Chapter 2 Infinitesimal Analysis and Hypermodels -- 2.1 Motivations -- 2.2 Hypermodels and analysis -- Chapter 3 Absence of Arbitrage -- 3.1 Introduction -- 3.2 Absence of arbitrage and the binary tree hypermodel -- 3.2.1 A mini-model -- 3.2.2 Binary tree model -- 3.2.3 Binary tree hypermodel -- 3.2.4 Finiteness of stock prices -- 3.2.5 Risk-neutral measure for binary tree hypermodel -- 3.3 Black-Scholes type PDE from virtually arbitrage-free -- 3.3.1 Virtually arbitrage free -- Chapter 4 Explicit Option Pricing -- 4.1 From hypermodel to PDE -- 4.1.1 Barrier conditions for derivative claims -- 4.1.2 Tangible price processes -- 4.1.3 Differential equations in a hypermodel -- 4.1.4 Black-Scholes type PDE -- 4.2 Pricing options explicitly -- 4.2.1 The classical Black-Scholes formula -- 4.3 The barrier option -- 4.4 The American option -- Chapter 5 Pricing with Binary Tree Hypermodels -- 5.1 Hypermodels for the Cox-Ross-Rubinstein approach -- 5.2 The CRR matrix and Examples -- Chapter 6 Further Applications -- 6.1 Sensitivity analysis -- 6.1.1 The Greeks -- 6.1.2 Computing the Greeks from translating -- 6.2 Implied volatility -- 6.3 Term structure of interest rates -- Chapter 7 The Mathematics of Hypermodels -- 7.1 Mathematical logic and Classical Hyperanalysis -- 7.1.1 Logic and hypermodels *R -- 7.1.2 Construction of *R using the compactness theorem -- 7.1.3 Construction of *R using ultrapowers -- 7.1.4 Some basic properties of hypermodel *R -- 7.1.5 Hypermodels of R in richer languages -- 7.1.6 Some examples -- 7.1.7 References -- 7.2 The hyperuniverse -- 7.2.1 Doing mathematics in the language of set theory -- 7.2.2 Hyperuniverse and the hyperextension -- 7.2.3 The existence of the hyperextension -- 7.2.4 Applications and examples -- 7.2.5 References -- 7.3 Hyperanalysis of probability -- 7.3.1 The Loeb measure construction -- 7.3.2 Loeb integration theory -- 7.3.3 Some examples -- 7.4 Hypermodels of Brownian Motion -- 7.4.1 Anderson's discrete hypermodel of Brownian motion -- 7.4.2 Some * continuous hypermodels of Brownian motion -- 7.4.3 Some examples -- 7.5 Itô Integral and Stochastic Differential Equations -- 7.5.1 Some general remarks -- 7.5.2 Wiener integral and Itô integral -- 7.5.3 Itô's lemma and the Stratonovitch integral -- 7.6 Solving Stochastic differential equations -- 7.7 Malliavin calculus -- 7.8 White noise analysis -- 7.9 Universality and homogeneity properties of hyperfinite models -- Appendix. |
ctrlnum | (OCoLC)228115550 |
dewey-full | 332.6 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.6 |
dewey-search | 332.6 |
dewey-sort | 3332.6 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07026cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn228115550</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030415s2003 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">Nz</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">UV0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VNS</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">S9I</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CGU</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">60716329</subfield><subfield code="a">149500458</subfield><subfield code="a">475194440</subfield><subfield code="a">475454154</subfield><subfield code="a">475941311</subfield><subfield code="a">614770311</subfield><subfield code="a">646733913</subfield><subfield code="a">722370532</subfield><subfield code="a">748530930</subfield><subfield code="a">815743352</subfield><subfield code="a">888541720</subfield><subfield code="a">936902677</subfield><subfield code="a">961659481</subfield><subfield code="a">962574069</subfield><subfield code="a">988464554</subfield><subfield code="a">991913808</subfield><subfield code="a">1037726392</subfield><subfield code="a">1038667500</subfield><subfield code="a">1045498260</subfield><subfield code="a">1055382274</subfield><subfield code="a">1081296254</subfield><subfield code="a">1153508643</subfield><subfield code="a">1162456771</subfield><subfield code="a">1228605504</subfield><subfield code="a">1241773495</subfield><subfield code="a">1290073640</subfield><subfield code="a">1300565779</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812564527</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812564528</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810244286</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810244282</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281876909</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281876904</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611876906</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611876901</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810244282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228115550</subfield><subfield code="z">(OCoLC)60716329</subfield><subfield code="z">(OCoLC)149500458</subfield><subfield code="z">(OCoLC)475194440</subfield><subfield code="z">(OCoLC)475454154</subfield><subfield code="z">(OCoLC)475941311</subfield><subfield code="z">(OCoLC)614770311</subfield><subfield code="z">(OCoLC)646733913</subfield><subfield code="z">(OCoLC)722370532</subfield><subfield code="z">(OCoLC)748530930</subfield><subfield code="z">(OCoLC)815743352</subfield><subfield code="z">(OCoLC)888541720</subfield><subfield code="z">(OCoLC)936902677</subfield><subfield code="z">(OCoLC)961659481</subfield><subfield code="z">(OCoLC)962574069</subfield><subfield code="z">(OCoLC)988464554</subfield><subfield code="z">(OCoLC)991913808</subfield><subfield code="z">(OCoLC)1037726392</subfield><subfield code="z">(OCoLC)1038667500</subfield><subfield code="z">(OCoLC)1045498260</subfield><subfield code="z">(OCoLC)1055382274</subfield><subfield code="z">(OCoLC)1081296254</subfield><subfield code="z">(OCoLC)1153508643</subfield><subfield code="z">(OCoLC)1162456771</subfield><subfield code="z">(OCoLC)1228605504</subfield><subfield code="z">(OCoLC)1241773495</subfield><subfield code="z">(OCoLC)1290073640</subfield><subfield code="z">(OCoLC)1300565779</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">HG4515.2</subfield><subfield code="b">.N4 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="x">036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBV</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">332.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ng, Siu-Ah.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjB43KhJxBPTrKJgCq4xrC</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2003055658</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypermodels in mathematical finance :</subfield><subfield code="b">modelling via infinitesimal analysis /</subfield><subfield code="c">Siu-Ah Ng.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 298 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 289-294) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Preface -- Contents -- Notation and Convention -- Chapter 1 Basic Concepts and Practice in Finance -- 1.1 Introducing mathematical finance -- 1.2 Basic securities -- 1.2.1 Stocks -- 1.2.2 Bonds -- 1.2.3 Others: bank accounts, currencies and commodities -- 1.3 Derivative securities -- 1.3.1 Options -- 1.3.2 Other derivative securities -- 1.4 Theory and practice -- Chapter 2 Infinitesimal Analysis and Hypermodels -- 2.1 Motivations -- 2.2 Hypermodels and analysis -- Chapter 3 Absence of Arbitrage -- 3.1 Introduction -- 3.2 Absence of arbitrage and the binary tree hypermodel -- 3.2.1 A mini-model -- 3.2.2 Binary tree model -- 3.2.3 Binary tree hypermodel -- 3.2.4 Finiteness of stock prices -- 3.2.5 Risk-neutral measure for binary tree hypermodel -- 3.3 Black-Scholes type PDE from virtually arbitrage-free -- 3.3.1 Virtually arbitrage free -- Chapter 4 Explicit Option Pricing -- 4.1 From hypermodel to PDE -- 4.1.1 Barrier conditions for derivative claims -- 4.1.2 Tangible price processes -- 4.1.3 Differential equations in a hypermodel -- 4.1.4 Black-Scholes type PDE -- 4.2 Pricing options explicitly -- 4.2.1 The classical Black-Scholes formula -- 4.3 The barrier option -- 4.4 The American option -- Chapter 5 Pricing with Binary Tree Hypermodels -- 5.1 Hypermodels for the Cox-Ross-Rubinstein approach -- 5.2 The CRR matrix and Examples -- Chapter 6 Further Applications -- 6.1 Sensitivity analysis -- 6.1.1 The Greeks -- 6.1.2 Computing the Greeks from translating -- 6.2 Implied volatility -- 6.3 Term structure of interest rates -- Chapter 7 The Mathematics of Hypermodels -- 7.1 Mathematical logic and Classical Hyperanalysis -- 7.1.1 Logic and hypermodels *R -- 7.1.2 Construction of *R using the compactness theorem -- 7.1.3 Construction of *R using ultrapowers -- 7.1.4 Some basic properties of hypermodel *R -- 7.1.5 Hypermodels of R in richer languages -- 7.1.6 Some examples -- 7.1.7 References -- 7.2 The hyperuniverse -- 7.2.1 Doing mathematics in the language of set theory -- 7.2.2 Hyperuniverse and the hyperextension -- 7.2.3 The existence of the hyperextension -- 7.2.4 Applications and examples -- 7.2.5 References -- 7.3 Hyperanalysis of probability -- 7.3.1 The Loeb measure construction -- 7.3.2 Loeb integration theory -- 7.3.3 Some examples -- 7.4 Hypermodels of Brownian Motion -- 7.4.1 Anderson's discrete hypermodel of Brownian motion -- 7.4.2 Some * continuous hypermodels of Brownian motion -- 7.4.3 Some examples -- 7.5 Itô Integral and Stochastic Differential Equations -- 7.5.1 Some general remarks -- 7.5.2 Wiener integral and Itô integral -- 7.5.3 Itô's lemma and the Stratonovitch integral -- 7.6 Solving Stochastic differential equations -- 7.7 Malliavin calculus -- 7.8 White noise analysis -- 7.9 Universality and homogeneity properties of hyperfinite models -- Appendix.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">At the beginning of the new millennium, two unstoppable processes aretaking place in the world: (1) globalization of the economy; (2)information revolution. As a consequence, there is greaterparticipation of the world population in capital market investment, such as bonds and stocks and their derivatives.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Investments</subfield><subfield code="x">Mathematical models.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067718</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Securities</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Risk management</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Investissements</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Gestion du risque</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Investments & Securities</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Investments</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Risk management</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Securities</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hypermodels in mathematical finance (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGCJGC4gCxvH6k333jh7f3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ng, Siu-Ah.</subfield><subfield code="t">Hypermodels in mathematical finance.</subfield><subfield code="d">River Edge, N.J. : World Scientific, ©2003</subfield><subfield code="w">(DLC) 52066471</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=134085</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=134085</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21190638</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL234370</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">134085</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2405961</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn228115550 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:36:03Z |
institution | BVB |
isbn | 9812564527 9789812564528 9789810244286 9810244282 1281876909 9781281876904 9786611876906 6611876901 |
language | English |
oclc_num | 228115550 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 298 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | World Scientific, |
record_format | marc |
spelling | Ng, Siu-Ah. https://id.oclc.org/worldcat/entity/E39PCjB43KhJxBPTrKJgCq4xrC http://id.loc.gov/authorities/names/no2003055658 Hypermodels in mathematical finance : modelling via infinitesimal analysis / Siu-Ah Ng. River Edge, N.J. : World Scientific, ©2003. 1 online resource (xiii, 298 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references (pages 289-294) and index. Cover -- Preface -- Contents -- Notation and Convention -- Chapter 1 Basic Concepts and Practice in Finance -- 1.1 Introducing mathematical finance -- 1.2 Basic securities -- 1.2.1 Stocks -- 1.2.2 Bonds -- 1.2.3 Others: bank accounts, currencies and commodities -- 1.3 Derivative securities -- 1.3.1 Options -- 1.3.2 Other derivative securities -- 1.4 Theory and practice -- Chapter 2 Infinitesimal Analysis and Hypermodels -- 2.1 Motivations -- 2.2 Hypermodels and analysis -- Chapter 3 Absence of Arbitrage -- 3.1 Introduction -- 3.2 Absence of arbitrage and the binary tree hypermodel -- 3.2.1 A mini-model -- 3.2.2 Binary tree model -- 3.2.3 Binary tree hypermodel -- 3.2.4 Finiteness of stock prices -- 3.2.5 Risk-neutral measure for binary tree hypermodel -- 3.3 Black-Scholes type PDE from virtually arbitrage-free -- 3.3.1 Virtually arbitrage free -- Chapter 4 Explicit Option Pricing -- 4.1 From hypermodel to PDE -- 4.1.1 Barrier conditions for derivative claims -- 4.1.2 Tangible price processes -- 4.1.3 Differential equations in a hypermodel -- 4.1.4 Black-Scholes type PDE -- 4.2 Pricing options explicitly -- 4.2.1 The classical Black-Scholes formula -- 4.3 The barrier option -- 4.4 The American option -- Chapter 5 Pricing with Binary Tree Hypermodels -- 5.1 Hypermodels for the Cox-Ross-Rubinstein approach -- 5.2 The CRR matrix and Examples -- Chapter 6 Further Applications -- 6.1 Sensitivity analysis -- 6.1.1 The Greeks -- 6.1.2 Computing the Greeks from translating -- 6.2 Implied volatility -- 6.3 Term structure of interest rates -- Chapter 7 The Mathematics of Hypermodels -- 7.1 Mathematical logic and Classical Hyperanalysis -- 7.1.1 Logic and hypermodels *R -- 7.1.2 Construction of *R using the compactness theorem -- 7.1.3 Construction of *R using ultrapowers -- 7.1.4 Some basic properties of hypermodel *R -- 7.1.5 Hypermodels of R in richer languages -- 7.1.6 Some examples -- 7.1.7 References -- 7.2 The hyperuniverse -- 7.2.1 Doing mathematics in the language of set theory -- 7.2.2 Hyperuniverse and the hyperextension -- 7.2.3 The existence of the hyperextension -- 7.2.4 Applications and examples -- 7.2.5 References -- 7.3 Hyperanalysis of probability -- 7.3.1 The Loeb measure construction -- 7.3.2 Loeb integration theory -- 7.3.3 Some examples -- 7.4 Hypermodels of Brownian Motion -- 7.4.1 Anderson's discrete hypermodel of Brownian motion -- 7.4.2 Some * continuous hypermodels of Brownian motion -- 7.4.3 Some examples -- 7.5 Itô Integral and Stochastic Differential Equations -- 7.5.1 Some general remarks -- 7.5.2 Wiener integral and Itô integral -- 7.5.3 Itô's lemma and the Stratonovitch integral -- 7.6 Solving Stochastic differential equations -- 7.7 Malliavin calculus -- 7.8 White noise analysis -- 7.9 Universality and homogeneity properties of hyperfinite models -- Appendix. Print version record. At the beginning of the new millennium, two unstoppable processes aretaking place in the world: (1) globalization of the economy; (2)information revolution. As a consequence, there is greaterparticipation of the world population in capital market investment, such as bonds and stocks and their derivatives. English. Investments Mathematical models. http://id.loc.gov/authorities/subjects/sh85067718 Securities Mathematical models. Risk management Mathematical models. Investissements Modèles mathématiques. Gestion du risque Modèles mathématiques. BUSINESS & ECONOMICS Investments & Securities General. bisacsh Investments Mathematical models fast Risk management Mathematical models fast Securities Mathematical models fast has work: Hypermodels in mathematical finance (Text) https://id.oclc.org/worldcat/entity/E39PCGCJGC4gCxvH6k333jh7f3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Ng, Siu-Ah. Hypermodels in mathematical finance. River Edge, N.J. : World Scientific, ©2003 (DLC) 52066471 |
spellingShingle | Ng, Siu-Ah Hypermodels in mathematical finance : modelling via infinitesimal analysis / Cover -- Preface -- Contents -- Notation and Convention -- Chapter 1 Basic Concepts and Practice in Finance -- 1.1 Introducing mathematical finance -- 1.2 Basic securities -- 1.2.1 Stocks -- 1.2.2 Bonds -- 1.2.3 Others: bank accounts, currencies and commodities -- 1.3 Derivative securities -- 1.3.1 Options -- 1.3.2 Other derivative securities -- 1.4 Theory and practice -- Chapter 2 Infinitesimal Analysis and Hypermodels -- 2.1 Motivations -- 2.2 Hypermodels and analysis -- Chapter 3 Absence of Arbitrage -- 3.1 Introduction -- 3.2 Absence of arbitrage and the binary tree hypermodel -- 3.2.1 A mini-model -- 3.2.2 Binary tree model -- 3.2.3 Binary tree hypermodel -- 3.2.4 Finiteness of stock prices -- 3.2.5 Risk-neutral measure for binary tree hypermodel -- 3.3 Black-Scholes type PDE from virtually arbitrage-free -- 3.3.1 Virtually arbitrage free -- Chapter 4 Explicit Option Pricing -- 4.1 From hypermodel to PDE -- 4.1.1 Barrier conditions for derivative claims -- 4.1.2 Tangible price processes -- 4.1.3 Differential equations in a hypermodel -- 4.1.4 Black-Scholes type PDE -- 4.2 Pricing options explicitly -- 4.2.1 The classical Black-Scholes formula -- 4.3 The barrier option -- 4.4 The American option -- Chapter 5 Pricing with Binary Tree Hypermodels -- 5.1 Hypermodels for the Cox-Ross-Rubinstein approach -- 5.2 The CRR matrix and Examples -- Chapter 6 Further Applications -- 6.1 Sensitivity analysis -- 6.1.1 The Greeks -- 6.1.2 Computing the Greeks from translating -- 6.2 Implied volatility -- 6.3 Term structure of interest rates -- Chapter 7 The Mathematics of Hypermodels -- 7.1 Mathematical logic and Classical Hyperanalysis -- 7.1.1 Logic and hypermodels *R -- 7.1.2 Construction of *R using the compactness theorem -- 7.1.3 Construction of *R using ultrapowers -- 7.1.4 Some basic properties of hypermodel *R -- 7.1.5 Hypermodels of R in richer languages -- 7.1.6 Some examples -- 7.1.7 References -- 7.2 The hyperuniverse -- 7.2.1 Doing mathematics in the language of set theory -- 7.2.2 Hyperuniverse and the hyperextension -- 7.2.3 The existence of the hyperextension -- 7.2.4 Applications and examples -- 7.2.5 References -- 7.3 Hyperanalysis of probability -- 7.3.1 The Loeb measure construction -- 7.3.2 Loeb integration theory -- 7.3.3 Some examples -- 7.4 Hypermodels of Brownian Motion -- 7.4.1 Anderson's discrete hypermodel of Brownian motion -- 7.4.2 Some * continuous hypermodels of Brownian motion -- 7.4.3 Some examples -- 7.5 Itô Integral and Stochastic Differential Equations -- 7.5.1 Some general remarks -- 7.5.2 Wiener integral and Itô integral -- 7.5.3 Itô's lemma and the Stratonovitch integral -- 7.6 Solving Stochastic differential equations -- 7.7 Malliavin calculus -- 7.8 White noise analysis -- 7.9 Universality and homogeneity properties of hyperfinite models -- Appendix. Investments Mathematical models. http://id.loc.gov/authorities/subjects/sh85067718 Securities Mathematical models. Risk management Mathematical models. Investissements Modèles mathématiques. Gestion du risque Modèles mathématiques. BUSINESS & ECONOMICS Investments & Securities General. bisacsh Investments Mathematical models fast Risk management Mathematical models fast Securities Mathematical models fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067718 |
title | Hypermodels in mathematical finance : modelling via infinitesimal analysis / |
title_auth | Hypermodels in mathematical finance : modelling via infinitesimal analysis / |
title_exact_search | Hypermodels in mathematical finance : modelling via infinitesimal analysis / |
title_full | Hypermodels in mathematical finance : modelling via infinitesimal analysis / Siu-Ah Ng. |
title_fullStr | Hypermodels in mathematical finance : modelling via infinitesimal analysis / Siu-Ah Ng. |
title_full_unstemmed | Hypermodels in mathematical finance : modelling via infinitesimal analysis / Siu-Ah Ng. |
title_short | Hypermodels in mathematical finance : |
title_sort | hypermodels in mathematical finance modelling via infinitesimal analysis |
title_sub | modelling via infinitesimal analysis / |
topic | Investments Mathematical models. http://id.loc.gov/authorities/subjects/sh85067718 Securities Mathematical models. Risk management Mathematical models. Investissements Modèles mathématiques. Gestion du risque Modèles mathématiques. BUSINESS & ECONOMICS Investments & Securities General. bisacsh Investments Mathematical models fast Risk management Mathematical models fast Securities Mathematical models fast |
topic_facet | Investments Mathematical models. Securities Mathematical models. Risk management Mathematical models. Investissements Modèles mathématiques. Gestion du risque Modèles mathématiques. BUSINESS & ECONOMICS Investments & Securities General. Investments Mathematical models Risk management Mathematical models Securities Mathematical models |
work_keys_str_mv | AT ngsiuah hypermodelsinmathematicalfinancemodellingviainfinitesimalanalysis |