Quantized partial differential equations /:
This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considere...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
©2004.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro. |
Beschreibung: | 1 online resource (xiii, 485 pages) |
Bibliographie: | Includes bibliographical references (pages 461-471) and index. |
ISBN: | 9812562516 9789812562517 9789812387646 9812387641 1281872474 9781281872470 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn228114414 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 040719s2004 nju ob 001 0 eng d | ||
040 | |a Nz |b eng |e pn |c UV0 |d OCLCQ |d N$T |d YDXCP |d IDEBK |d OCLCQ |d DKDLA |d ADU |d E7B |d OCLCQ |d MERUC |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d STF |d OCLCQ |d AZK |d OCLCQ |d COCUF |d AGLDB |d CCO |d MOR |d PIFBR |d OCLCQ |d WRM |d VTS |d NRAMU |d CRU |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d KNM |d OCLCQ |d G3B |d AU@ |d UKAHL |d OCLCQ |d OCLCO |d MHW |d OCLCO |d OCLCQ |d OCLCO |d INARC | ||
019 | |a 60410436 |a 475186884 |a 488557119 |a 614757973 |a 646733409 |a 722365905 |a 815742864 |a 888497002 |a 961673466 |a 962601905 |a 1055401154 |a 1065070661 |a 1081286103 | ||
020 | |a 9812562516 |q (electronic bk.) | ||
020 | |a 9789812562517 |q (electronic bk.) | ||
020 | |a 9789812387646 | ||
020 | |a 9812387641 | ||
020 | |a 1281872474 | ||
020 | |a 9781281872470 | ||
020 | |z 9812387641 | ||
035 | |a (OCoLC)228114414 |z (OCoLC)60410436 |z (OCoLC)475186884 |z (OCoLC)488557119 |z (OCoLC)614757973 |z (OCoLC)646733409 |z (OCoLC)722365905 |z (OCoLC)815742864 |z (OCoLC)888497002 |z (OCoLC)961673466 |z (OCoLC)962601905 |z (OCoLC)1055401154 |z (OCoLC)1065070661 |z (OCoLC)1081286103 | ||
050 | 4 | |a QC20.7.G76 |b P73 2004eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
072 | 7 | |a TBN |2 bicssc | |
082 | 7 | |a 530.1522 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Prastaro, Agostino. | |
245 | 1 | 0 | |a Quantized partial differential equations / |c A Prástaro. |
260 | |a River Edge, NJ : |b World Scientific, |c ©2004. | ||
300 | |a 1 online resource (xiii, 485 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 461-471) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro. | ||
505 | 0 | |a Quantized PDE's I: Noncommutative manifolds -- Quantized PDE's II: Noncommutative PDE's -- Quantized PDE's III: Quantizations of commutative PDE's -- Addendum I: Bordism groups and the (NS)-problem -- Addendum I: Bordism groups and variational PDE's. | |
650 | 0 | |a Quantum groups. |0 http://id.loc.gov/authorities/subjects/sh90005801 | |
650 | 0 | |a Quantum field theory. |0 http://id.loc.gov/authorities/subjects/sh85109461 | |
650 | 6 | |a Groupes quantiques. | |
650 | 6 | |a Théorie quantique des champs. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Quantum field theory |2 fast | |
650 | 7 | |a Quantum groups |2 fast | |
776 | 0 | 8 | |i Print version: |a Prastaro, Agostino. |t Quantized partial differential equations. |d River Edge, NJ : World Scientific, ©2004 |w (DLC) 55964727 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130032 |3 Volltext |
938 | |a Internet Archive |b INAR |n quantizedpartial0000pras | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH21190570 | ||
938 | |a ebrary |b EBRY |n ebr10082184 | ||
938 | |a EBSCOhost |b EBSC |n 130032 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 187247 | ||
938 | |a YBP Library Services |b YANK |n 2405939 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn228114414 |
---|---|
_version_ | 1816881665705771008 |
adam_text | |
any_adam_object | |
author | Prastaro, Agostino |
author_facet | Prastaro, Agostino |
author_role | |
author_sort | Prastaro, Agostino |
author_variant | a p ap |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.G76 P73 2004eb |
callnumber-search | QC20.7.G76 P73 2004eb |
callnumber-sort | QC 220.7 G76 P73 42004EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Quantized PDE's I: Noncommutative manifolds -- Quantized PDE's II: Noncommutative PDE's -- Quantized PDE's III: Quantizations of commutative PDE's -- Addendum I: Bordism groups and the (NS)-problem -- Addendum I: Bordism groups and variational PDE's. |
ctrlnum | (OCoLC)228114414 |
dewey-full | 530.1522 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1522 |
dewey-search | 530.1522 |
dewey-sort | 3530.1522 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03751cam a2200613Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn228114414</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">040719s2004 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">Nz</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">UV0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CCO</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">KNM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">60410436</subfield><subfield code="a">475186884</subfield><subfield code="a">488557119</subfield><subfield code="a">614757973</subfield><subfield code="a">646733409</subfield><subfield code="a">722365905</subfield><subfield code="a">815742864</subfield><subfield code="a">888497002</subfield><subfield code="a">961673466</subfield><subfield code="a">962601905</subfield><subfield code="a">1055401154</subfield><subfield code="a">1065070661</subfield><subfield code="a">1081286103</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812562516</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812562517</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812387646</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812387641</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281872474</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281872470</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812387641</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228114414</subfield><subfield code="z">(OCoLC)60410436</subfield><subfield code="z">(OCoLC)475186884</subfield><subfield code="z">(OCoLC)488557119</subfield><subfield code="z">(OCoLC)614757973</subfield><subfield code="z">(OCoLC)646733409</subfield><subfield code="z">(OCoLC)722365905</subfield><subfield code="z">(OCoLC)815742864</subfield><subfield code="z">(OCoLC)888497002</subfield><subfield code="z">(OCoLC)961673466</subfield><subfield code="z">(OCoLC)962601905</subfield><subfield code="z">(OCoLC)1055401154</subfield><subfield code="z">(OCoLC)1065070661</subfield><subfield code="z">(OCoLC)1081286103</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.G76</subfield><subfield code="b">P73 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TBN</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.1522</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prastaro, Agostino.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantized partial differential equations /</subfield><subfield code="c">A Prástaro.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 485 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 461-471) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Quantized PDE's I: Noncommutative manifolds -- Quantized PDE's II: Noncommutative PDE's -- Quantized PDE's III: Quantizations of commutative PDE's -- Addendum I: Bordism groups and the (NS)-problem -- Addendum I: Bordism groups and variational PDE's.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90005801</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum field theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109461</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes quantiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Prastaro, Agostino.</subfield><subfield code="t">Quantized partial differential equations.</subfield><subfield code="d">River Edge, NJ : World Scientific, ©2004</subfield><subfield code="w">(DLC) 55964727</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130032</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">quantizedpartial0000pras</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21190570</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10082184</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">130032</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">187247</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2405939</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn228114414 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:20Z |
institution | BVB |
isbn | 9812562516 9789812562517 9789812387646 9812387641 1281872474 9781281872470 |
language | English |
oclc_num | 228114414 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 485 pages) |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific, |
record_format | marc |
spelling | Prastaro, Agostino. Quantized partial differential equations / A Prástaro. River Edge, NJ : World Scientific, ©2004. 1 online resource (xiii, 485 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references (pages 461-471) and index. Print version record. This book presents, for the first time, a systematic formulation ofthe geometric theory of noncommutative PDE's which is suitable enoughto be used for a mathematical description of quantum dynamics andquantum field theory. A geometric theory of supersymmetric quantumPDE's is also considered, in order to describe quantumsupergravity. Covariant and canonical quantizations of (super) PDE'sare shown to be founded on the geometric theory of PDE's and toproduce quantum (super) PDE's by means of functors from the categoryof commutative (super) PDE's to the category of quantum (super)PDE's. Global pro. Quantized PDE's I: Noncommutative manifolds -- Quantized PDE's II: Noncommutative PDE's -- Quantized PDE's III: Quantizations of commutative PDE's -- Addendum I: Bordism groups and the (NS)-problem -- Addendum I: Bordism groups and variational PDE's. Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Groupes quantiques. Théorie quantique des champs. SCIENCE Physics Mathematical & Computational. bisacsh Quantum field theory fast Quantum groups fast Print version: Prastaro, Agostino. Quantized partial differential equations. River Edge, NJ : World Scientific, ©2004 (DLC) 55964727 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130032 Volltext |
spellingShingle | Prastaro, Agostino Quantized partial differential equations / Quantized PDE's I: Noncommutative manifolds -- Quantized PDE's II: Noncommutative PDE's -- Quantized PDE's III: Quantizations of commutative PDE's -- Addendum I: Bordism groups and the (NS)-problem -- Addendum I: Bordism groups and variational PDE's. Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Groupes quantiques. Théorie quantique des champs. SCIENCE Physics Mathematical & Computational. bisacsh Quantum field theory fast Quantum groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh90005801 http://id.loc.gov/authorities/subjects/sh85109461 |
title | Quantized partial differential equations / |
title_auth | Quantized partial differential equations / |
title_exact_search | Quantized partial differential equations / |
title_full | Quantized partial differential equations / A Prástaro. |
title_fullStr | Quantized partial differential equations / A Prástaro. |
title_full_unstemmed | Quantized partial differential equations / A Prástaro. |
title_short | Quantized partial differential equations / |
title_sort | quantized partial differential equations |
topic | Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Groupes quantiques. Théorie quantique des champs. SCIENCE Physics Mathematical & Computational. bisacsh Quantum field theory fast Quantum groups fast |
topic_facet | Quantum groups. Quantum field theory. Groupes quantiques. Théorie quantique des champs. SCIENCE Physics Mathematical & Computational. Quantum field theory Quantum groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130032 |
work_keys_str_mv | AT prastaroagostino quantizedpartialdifferentialequations |