Nonlinear ordinary differential equations :: an introduction for scientists and engineers /
Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing ove...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2007.
|
Ausgabe: | 4th ed. |
Schriftenreihe: | Oxford applied and engineering mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions. - ;This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text. |
Beschreibung: | Previous edition: 1999. |
Beschreibung: | 1 online resource (viii, 531 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191525995 0191525995 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn183204930 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 071210s2007 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d N$T |d E7B |d OCLCQ |d OCLCF |d OCLCO |d OCLCQ |d NLGGC |d OCLCQ |d AZK |d LOA |d JBG |d COCUF |d AGLDB |d MOR |d PIFAG |d OTZ |d OCLCQ |d U3W |d UUM |d STF |d WRM |d OCLCQ |d VTS |d CEF |d INT |d NRAMU |d VT2 |d OCLCQ |d LHU |d FVL |d YOU |d CANPU |d TKN |d OCLCQ |d MT4IT |d K6U |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d BRX |d YDX |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a GBA740848 |2 bnb | ||
019 | |a 647678259 |a 961524029 |a 962624570 |a 965999327 |a 988501652 |a 991923334 |a 994786901 |a 1037926799 |a 1038591347 |a 1045532448 |a 1059788889 |a 1078061516 |a 1099562636 |a 1162385728 | ||
020 | |a 9780191525995 |q (electronic bk.) | ||
020 | |a 0191525995 |q (electronic bk.) | ||
020 | |z 9780199208241 |q (hbk.) | ||
020 | |z 0199208247 |q (hbk.) | ||
020 | |z 9780199208258 |q (pbk.) | ||
020 | |z 0199208255 |q (pbk.) | ||
027 | |a MYILIB_CUp | ||
035 | |a (OCoLC)183204930 |z (OCoLC)647678259 |z (OCoLC)961524029 |z (OCoLC)962624570 |z (OCoLC)965999327 |z (OCoLC)988501652 |z (OCoLC)991923334 |z (OCoLC)994786901 |z (OCoLC)1037926799 |z (OCoLC)1038591347 |z (OCoLC)1045532448 |z (OCoLC)1059788889 |z (OCoLC)1078061516 |z (OCoLC)1099562636 |z (OCoLC)1162385728 | ||
050 | 4 | |a QA372 |b .J58 2007eb | |
055 | 1 | 3 | |a QA372 |b .J648 2007eb |
072 | 7 | |a MAT |x 007010 |2 bisacsh | |
082 | 7 | |a 515.352 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Jordan, D. W. |q (Dominic William) | |
245 | 1 | 0 | |a Nonlinear ordinary differential equations : |b an introduction for scientists and engineers / |c D.W. Jordan and P. Smith. |
250 | |a 4th ed. | ||
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2007. | ||
300 | |a 1 online resource (viii, 531 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford applied and engineering mathematics | |
500 | |a Previous edition: 1999. | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface to the fourth edition; 1 Second-order differential equations in the phase plane; 2 Plane autonomous systems and linearization; 3 Geometrical aspects of plane autonomous systems; 4 Periodic solutions; averaging methods; 5 Perturbation methods; 6 Singular perturbation methods; 7 Forced oscillations: harmonic and subharmonic response, stability, and entrainment; 8 Stability; 9 Stability by solution perturbation: Mathieu's equation; 10 Liapunov methods for determining stability of the zero solution; 11 The existence of periodic solutions; 12 Bifurcations and manifolds | |
505 | 8 | |a 13 Poincaré sequences, homoclinic bifurcation, and chaosAnswers to the exercises; Appendices; References and further reading; Index; | |
520 | |a Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions. - ;This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text. | ||
546 | |a English. | ||
650 | 0 | |a Differential equations, Nonlinear. |0 http://id.loc.gov/authorities/subjects/sh85037906 | |
650 | 6 | |a Équations différentielles non linéaires. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Ordinary. |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |2 fast | |
700 | 1 | |a Smith, Peter, |d 1935- | |
776 | 0 | 8 | |i Print version: |a Jordan, D.W. (Dominic William). |t Nonlinear ordinary differential equations. |b 4th ed. |d Oxford ; New York : Oxford University Press, 2007 |z 9780199208241 |z 0199208247 |w (OCoLC)137312934 |
830 | 0 | |a Oxford applied and engineering mathematics. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=213874 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 20451111 | ||
938 | |a ebrary |b EBRY |n ebr10197114 | ||
938 | |a EBSCOhost |b EBSC |n 213874 | ||
938 | |a YBP Library Services |b YANK |n 2745349 | ||
938 | |a YBP Library Services |b YANK |n 2875165 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn183204930 |
---|---|
_version_ | 1816881658528268288 |
adam_text | |
any_adam_object | |
author | Jordan, D. W. (Dominic William) |
author2 | Smith, Peter, 1935- |
author2_role | |
author2_variant | p s ps |
author_facet | Jordan, D. W. (Dominic William) Smith, Peter, 1935- |
author_role | |
author_sort | Jordan, D. W. |
author_variant | d w j dw dwj |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 .J58 2007eb |
callnumber-search | QA372 .J58 2007eb |
callnumber-sort | QA 3372 J58 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface to the fourth edition; 1 Second-order differential equations in the phase plane; 2 Plane autonomous systems and linearization; 3 Geometrical aspects of plane autonomous systems; 4 Periodic solutions; averaging methods; 5 Perturbation methods; 6 Singular perturbation methods; 7 Forced oscillations: harmonic and subharmonic response, stability, and entrainment; 8 Stability; 9 Stability by solution perturbation: Mathieu's equation; 10 Liapunov methods for determining stability of the zero solution; 11 The existence of periodic solutions; 12 Bifurcations and manifolds 13 Poincaré sequences, homoclinic bifurcation, and chaosAnswers to the exercises; Appendices; References and further reading; Index; |
ctrlnum | (OCoLC)183204930 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 4th ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04488cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn183204930</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">071210s2007 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">INT</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LHU</subfield><subfield code="d">FVL</subfield><subfield code="d">YOU</subfield><subfield code="d">CANPU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MT4IT</subfield><subfield code="d">K6U</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BRX</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA740848</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">647678259</subfield><subfield code="a">961524029</subfield><subfield code="a">962624570</subfield><subfield code="a">965999327</subfield><subfield code="a">988501652</subfield><subfield code="a">991923334</subfield><subfield code="a">994786901</subfield><subfield code="a">1037926799</subfield><subfield code="a">1038591347</subfield><subfield code="a">1045532448</subfield><subfield code="a">1059788889</subfield><subfield code="a">1078061516</subfield><subfield code="a">1099562636</subfield><subfield code="a">1162385728</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191525995</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191525995</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199208241</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199208247</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199208258</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199208255</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="027" ind1=" " ind2=" "><subfield code="a">MYILIB_CUp</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)183204930</subfield><subfield code="z">(OCoLC)647678259</subfield><subfield code="z">(OCoLC)961524029</subfield><subfield code="z">(OCoLC)962624570</subfield><subfield code="z">(OCoLC)965999327</subfield><subfield code="z">(OCoLC)988501652</subfield><subfield code="z">(OCoLC)991923334</subfield><subfield code="z">(OCoLC)994786901</subfield><subfield code="z">(OCoLC)1037926799</subfield><subfield code="z">(OCoLC)1038591347</subfield><subfield code="z">(OCoLC)1045532448</subfield><subfield code="z">(OCoLC)1059788889</subfield><subfield code="z">(OCoLC)1078061516</subfield><subfield code="z">(OCoLC)1099562636</subfield><subfield code="z">(OCoLC)1162385728</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA372</subfield><subfield code="b">.J58 2007eb</subfield></datafield><datafield tag="055" ind1="1" ind2="3"><subfield code="a">QA372</subfield><subfield code="b">.J648 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jordan, D. W.</subfield><subfield code="q">(Dominic William)</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear ordinary differential equations :</subfield><subfield code="b">an introduction for scientists and engineers /</subfield><subfield code="c">D.W. Jordan and P. Smith.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4th ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 531 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford applied and engineering mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Previous edition: 1999.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface to the fourth edition; 1 Second-order differential equations in the phase plane; 2 Plane autonomous systems and linearization; 3 Geometrical aspects of plane autonomous systems; 4 Periodic solutions; averaging methods; 5 Perturbation methods; 6 Singular perturbation methods; 7 Forced oscillations: harmonic and subharmonic response, stability, and entrainment; 8 Stability; 9 Stability by solution perturbation: Mathieu's equation; 10 Liapunov methods for determining stability of the zero solution; 11 The existence of periodic solutions; 12 Bifurcations and manifolds</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13 Poincaré sequences, homoclinic bifurcation, and chaosAnswers to the exercises; Appendices; References and further reading; Index;</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions. - ;This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Nonlinear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037906</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Ordinary.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Peter,</subfield><subfield code="d">1935-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Jordan, D.W. (Dominic William).</subfield><subfield code="t">Nonlinear ordinary differential equations.</subfield><subfield code="b">4th ed.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2007</subfield><subfield code="z">9780199208241</subfield><subfield code="z">0199208247</subfield><subfield code="w">(OCoLC)137312934</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford applied and engineering mathematics.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=213874</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20451111</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10197114</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">213874</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2745349</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2875165</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn183204930 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:13Z |
institution | BVB |
isbn | 9780191525995 0191525995 |
language | English |
oclc_num | 183204930 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 531 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford applied and engineering mathematics. |
series2 | Oxford applied and engineering mathematics |
spelling | Jordan, D. W. (Dominic William) Nonlinear ordinary differential equations : an introduction for scientists and engineers / D.W. Jordan and P. Smith. 4th ed. Oxford ; New York : Oxford University Press, 2007. 1 online resource (viii, 531 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Oxford applied and engineering mathematics Previous edition: 1999. Includes bibliographical references and index. Print version record. Preface to the fourth edition; 1 Second-order differential equations in the phase plane; 2 Plane autonomous systems and linearization; 3 Geometrical aspects of plane autonomous systems; 4 Periodic solutions; averaging methods; 5 Perturbation methods; 6 Singular perturbation methods; 7 Forced oscillations: harmonic and subharmonic response, stability, and entrainment; 8 Stability; 9 Stability by solution perturbation: Mathieu's equation; 10 Liapunov methods for determining stability of the zero solution; 11 The existence of periodic solutions; 12 Bifurcations and manifolds 13 Poincaré sequences, homoclinic bifurcation, and chaosAnswers to the exercises; Appendices; References and further reading; Index; Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions. - ;This is a thoroughly updated and expanded 4th edition of the classic text Nonlinear Ordinary Differential Equations by Dominic Jordan and Peter Smith. Including numerous worked examples and diagrams, further exercises have been incorporated into the text. English. Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Équations différentielles non linéaires. MATHEMATICS Differential Equations Ordinary. bisacsh Differential equations, Nonlinear fast Smith, Peter, 1935- Print version: Jordan, D.W. (Dominic William). Nonlinear ordinary differential equations. 4th ed. Oxford ; New York : Oxford University Press, 2007 9780199208241 0199208247 (OCoLC)137312934 Oxford applied and engineering mathematics. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=213874 Volltext |
spellingShingle | Jordan, D. W. (Dominic William) Nonlinear ordinary differential equations : an introduction for scientists and engineers / Oxford applied and engineering mathematics. Preface to the fourth edition; 1 Second-order differential equations in the phase plane; 2 Plane autonomous systems and linearization; 3 Geometrical aspects of plane autonomous systems; 4 Periodic solutions; averaging methods; 5 Perturbation methods; 6 Singular perturbation methods; 7 Forced oscillations: harmonic and subharmonic response, stability, and entrainment; 8 Stability; 9 Stability by solution perturbation: Mathieu's equation; 10 Liapunov methods for determining stability of the zero solution; 11 The existence of periodic solutions; 12 Bifurcations and manifolds 13 Poincaré sequences, homoclinic bifurcation, and chaosAnswers to the exercises; Appendices; References and further reading; Index; Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Équations différentielles non linéaires. MATHEMATICS Differential Equations Ordinary. bisacsh Differential equations, Nonlinear fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037906 |
title | Nonlinear ordinary differential equations : an introduction for scientists and engineers / |
title_auth | Nonlinear ordinary differential equations : an introduction for scientists and engineers / |
title_exact_search | Nonlinear ordinary differential equations : an introduction for scientists and engineers / |
title_full | Nonlinear ordinary differential equations : an introduction for scientists and engineers / D.W. Jordan and P. Smith. |
title_fullStr | Nonlinear ordinary differential equations : an introduction for scientists and engineers / D.W. Jordan and P. Smith. |
title_full_unstemmed | Nonlinear ordinary differential equations : an introduction for scientists and engineers / D.W. Jordan and P. Smith. |
title_short | Nonlinear ordinary differential equations : |
title_sort | nonlinear ordinary differential equations an introduction for scientists and engineers |
title_sub | an introduction for scientists and engineers / |
topic | Differential equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85037906 Équations différentielles non linéaires. MATHEMATICS Differential Equations Ordinary. bisacsh Differential equations, Nonlinear fast |
topic_facet | Differential equations, Nonlinear. Équations différentielles non linéaires. MATHEMATICS Differential Equations Ordinary. Differential equations, Nonlinear |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=213874 |
work_keys_str_mv | AT jordandw nonlinearordinarydifferentialequationsanintroductionforscientistsandengineers AT smithpeter nonlinearordinarydifferentialequationsanintroductionforscientistsandengineers |