Lecture notes in data mining /:
The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2006.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited "student-authored lectures" which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering, and association rules, this book also considers alternative candidates such as point estimation and genetic algorithms. The book's discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining |
Beschreibung: | 1 online resource (xiii, 222 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789812773630 9812773630 1281379042 9781281379047 9812568026 9789812568021 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn182727695 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 071203s2006 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d OCLCQ |d NLGGC |d OCLCQ |d MHW |d EBLCP |d DEBSZ |d OCLCQ |d COCUF |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d VTS |d AGLDB |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d STF |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 815571416 |a 879025456 |a 1055389792 |a 1065087044 |a 1081227321 |a 1086439159 |a 1228595204 | ||
020 | |a 9789812773630 |q (electronic bk.) | ||
020 | |a 9812773630 |q (electronic bk.) | ||
020 | |a 1281379042 | ||
020 | |a 9781281379047 | ||
020 | |a 9812568026 | ||
020 | |a 9789812568021 | ||
035 | |a (OCoLC)182727695 |z (OCoLC)815571416 |z (OCoLC)879025456 |z (OCoLC)1055389792 |z (OCoLC)1065087044 |z (OCoLC)1081227321 |z (OCoLC)1086439159 |z (OCoLC)1228595204 | ||
050 | 4 | |a QA76.9.D343 |b L43 2006eb | |
072 | 7 | |a COM |x 084010 |2 bisacsh | |
072 | 7 | |a COM |x 021000 |2 bisacsh | |
072 | 7 | |a COM |x 030000 |2 bisacsh | |
072 | 7 | |a UNF |2 bicssc | |
082 | 7 | |a 005.74 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Lecture notes in data mining / |c edited by Michael W. Berry, Murray Browne. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2006. | ||
300 | |a 1 online resource (xiii, 222 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited "student-authored lectures" which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering, and association rules, this book also considers alternative candidates such as point estimation and genetic algorithms. The book's discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining | ||
505 | 0 | |a 1. Point estimation algorithms -- 2. Applications of Bayes Theorem -- 3. Similarity measures -- 4. Decision trees -- 5. Genetic algorithms -- 6. Classification: distance-based algorithms -- 7. Decision tree-based algorithms -- 8. Covering (rule-based) algorithms -- 9. Clustering: an overview -- 10. Clustering: hierarchical algorithms -- ch. 11. Clustering: partitional algorithms -- 12. Clustering: large databases -- 13. Clustering: categorical attributes -- 14. Association rules: an overview -- 15. Association rules: parallel and distributed algorithms -- 16. Association rules: advanced techniques and measures -- 17. Spatial mining: techniques and algorithms. | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073 | |
650 | 2 | |a Data Mining |0 https://id.nlm.nih.gov/mesh/D057225 | |
650 | 6 | |a Exploration de données (Informatique) | |
650 | 7 | |a COMPUTERS |x Desktop Applications |x Databases. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Database Management |x General. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x System Administration |x Storage & Retrieval. |2 bisacsh | |
650 | 7 | |a Data mining |2 fast | |
650 | 1 | 7 | |a Datamining. |2 gtt |
700 | 1 | |a Berry, Michael W. |1 https://id.oclc.org/worldcat/entity/E39PBJyGXQ4FGc9fPdChTTdfbd |0 http://id.loc.gov/authorities/names/n99031470 | |
700 | 1 | |a Browne, Murray. |1 https://id.oclc.org/worldcat/entity/E39PCjtWQKWrqy8fmq988pYHG3 |0 http://id.loc.gov/authorities/names/n99031471 | |
758 | |i has work: |a Lecture notes in data mining (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGWKkTddfWkCh7D6TwTXbb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Lecture notes in data mining. |d Singapore ; Hackensack, NJ : World Scientific, ©2006 |z 9812568026 |z 9789812568021 |w (DLC) 2007271205 |w (OCoLC)81150806 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210789 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684455 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1681620 | ||
938 | |a EBSCOhost |b EBSC |n 210789 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 137904 | ||
938 | |a YBP Library Services |b YANK |n 2743223 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn182727695 |
---|---|
_version_ | 1816881658136100864 |
adam_text | |
any_adam_object | |
author2 | Berry, Michael W. Browne, Murray |
author2_role | |
author2_variant | m w b mw mwb m b mb |
author_GND | http://id.loc.gov/authorities/names/n99031470 http://id.loc.gov/authorities/names/n99031471 |
author_facet | Berry, Michael W. Browne, Murray |
author_sort | Berry, Michael W. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 L43 2006eb |
callnumber-search | QA76.9.D343 L43 2006eb |
callnumber-sort | QA 276.9 D343 L43 42006EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Point estimation algorithms -- 2. Applications of Bayes Theorem -- 3. Similarity measures -- 4. Decision trees -- 5. Genetic algorithms -- 6. Classification: distance-based algorithms -- 7. Decision tree-based algorithms -- 8. Covering (rule-based) algorithms -- 9. Clustering: an overview -- 10. Clustering: hierarchical algorithms -- ch. 11. Clustering: partitional algorithms -- 12. Clustering: large databases -- 13. Clustering: categorical attributes -- 14. Association rules: an overview -- 15. Association rules: parallel and distributed algorithms -- 16. Association rules: advanced techniques and measures -- 17. Spatial mining: techniques and algorithms. |
ctrlnum | (OCoLC)182727695 |
dewey-full | 005.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.74 |
dewey-search | 005.74 |
dewey-sort | 15.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05507cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn182727695</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">071203s2006 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">815571416</subfield><subfield code="a">879025456</subfield><subfield code="a">1055389792</subfield><subfield code="a">1065087044</subfield><subfield code="a">1081227321</subfield><subfield code="a">1086439159</subfield><subfield code="a">1228595204</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773630</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773630</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281379042</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281379047</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812568026</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812568021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)182727695</subfield><subfield code="z">(OCoLC)815571416</subfield><subfield code="z">(OCoLC)879025456</subfield><subfield code="z">(OCoLC)1055389792</subfield><subfield code="z">(OCoLC)1065087044</subfield><subfield code="z">(OCoLC)1081227321</subfield><subfield code="z">(OCoLC)1086439159</subfield><subfield code="z">(OCoLC)1228595204</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.9.D343</subfield><subfield code="b">L43 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">084010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">021000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">030000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UNF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Lecture notes in data mining /</subfield><subfield code="c">edited by Michael W. Berry, Murray Browne.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 222 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited "student-authored lectures" which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering, and association rules, this book also considers alternative candidates such as point estimation and genetic algorithms. The book's discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Point estimation algorithms -- 2. Applications of Bayes Theorem -- 3. Similarity measures -- 4. Decision trees -- 5. Genetic algorithms -- 6. Classification: distance-based algorithms -- 7. Decision tree-based algorithms -- 8. Covering (rule-based) algorithms -- 9. Clustering: an overview -- 10. Clustering: hierarchical algorithms -- ch. 11. Clustering: partitional algorithms -- 12. Clustering: large databases -- 13. Clustering: categorical attributes -- 14. Association rules: an overview -- 15. Association rules: parallel and distributed algorithms -- 16. Association rules: advanced techniques and measures -- 17. Spatial mining: techniques and algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97002073</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D057225</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Desktop Applications</subfield><subfield code="x">Databases.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Database Management</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">System Administration</subfield><subfield code="x">Storage & Retrieval.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Datamining.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berry, Michael W.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJyGXQ4FGc9fPdChTTdfbd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99031470</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Browne, Murray.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtWQKWrqy8fmq988pYHG3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n99031471</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lecture notes in data mining (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGWKkTddfWkCh7D6TwTXbb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Lecture notes in data mining.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2006</subfield><subfield code="z">9812568026</subfield><subfield code="z">9789812568021</subfield><subfield code="w">(DLC) 2007271205</subfield><subfield code="w">(OCoLC)81150806</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210789</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681620</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210789</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">137904</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2743223</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn182727695 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:13Z |
institution | BVB |
isbn | 9789812773630 9812773630 1281379042 9781281379047 9812568026 9789812568021 |
language | English |
oclc_num | 182727695 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 222 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
spelling | Lecture notes in data mining / edited by Michael W. Berry, Murray Browne. Singapore ; Hackensack, NJ : World Scientific, ©2006. 1 online resource (xiii, 222 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited "student-authored lectures" which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering, and association rules, this book also considers alternative candidates such as point estimation and genetic algorithms. The book's discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining 1. Point estimation algorithms -- 2. Applications of Bayes Theorem -- 3. Similarity measures -- 4. Decision trees -- 5. Genetic algorithms -- 6. Classification: distance-based algorithms -- 7. Decision tree-based algorithms -- 8. Covering (rule-based) algorithms -- 9. Clustering: an overview -- 10. Clustering: hierarchical algorithms -- ch. 11. Clustering: partitional algorithms -- 12. Clustering: large databases -- 13. Clustering: categorical attributes -- 14. Association rules: an overview -- 15. Association rules: parallel and distributed algorithms -- 16. Association rules: advanced techniques and measures -- 17. Spatial mining: techniques and algorithms. Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) COMPUTERS Desktop Applications Databases. bisacsh COMPUTERS Database Management General. bisacsh COMPUTERS System Administration Storage & Retrieval. bisacsh Data mining fast Datamining. gtt Berry, Michael W. https://id.oclc.org/worldcat/entity/E39PBJyGXQ4FGc9fPdChTTdfbd http://id.loc.gov/authorities/names/n99031470 Browne, Murray. https://id.oclc.org/worldcat/entity/E39PCjtWQKWrqy8fmq988pYHG3 http://id.loc.gov/authorities/names/n99031471 has work: Lecture notes in data mining (Text) https://id.oclc.org/worldcat/entity/E39PCGWKkTddfWkCh7D6TwTXbb https://id.oclc.org/worldcat/ontology/hasWork Print version: Lecture notes in data mining. Singapore ; Hackensack, NJ : World Scientific, ©2006 9812568026 9789812568021 (DLC) 2007271205 (OCoLC)81150806 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210789 Volltext |
spellingShingle | Lecture notes in data mining / 1. Point estimation algorithms -- 2. Applications of Bayes Theorem -- 3. Similarity measures -- 4. Decision trees -- 5. Genetic algorithms -- 6. Classification: distance-based algorithms -- 7. Decision tree-based algorithms -- 8. Covering (rule-based) algorithms -- 9. Clustering: an overview -- 10. Clustering: hierarchical algorithms -- ch. 11. Clustering: partitional algorithms -- 12. Clustering: large databases -- 13. Clustering: categorical attributes -- 14. Association rules: an overview -- 15. Association rules: parallel and distributed algorithms -- 16. Association rules: advanced techniques and measures -- 17. Spatial mining: techniques and algorithms. Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) COMPUTERS Desktop Applications Databases. bisacsh COMPUTERS Database Management General. bisacsh COMPUTERS System Administration Storage & Retrieval. bisacsh Data mining fast Datamining. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh97002073 https://id.nlm.nih.gov/mesh/D057225 |
title | Lecture notes in data mining / |
title_auth | Lecture notes in data mining / |
title_exact_search | Lecture notes in data mining / |
title_full | Lecture notes in data mining / edited by Michael W. Berry, Murray Browne. |
title_fullStr | Lecture notes in data mining / edited by Michael W. Berry, Murray Browne. |
title_full_unstemmed | Lecture notes in data mining / edited by Michael W. Berry, Murray Browne. |
title_short | Lecture notes in data mining / |
title_sort | lecture notes in data mining |
topic | Data mining. http://id.loc.gov/authorities/subjects/sh97002073 Data Mining https://id.nlm.nih.gov/mesh/D057225 Exploration de données (Informatique) COMPUTERS Desktop Applications Databases. bisacsh COMPUTERS Database Management General. bisacsh COMPUTERS System Administration Storage & Retrieval. bisacsh Data mining fast Datamining. gtt |
topic_facet | Data mining. Data Mining Exploration de données (Informatique) COMPUTERS Desktop Applications Databases. COMPUTERS Database Management General. COMPUTERS System Administration Storage & Retrieval. Data mining Datamining. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210789 |
work_keys_str_mv | AT berrymichaelw lecturenotesindatamining AT brownemurray lecturenotesindatamining |