Hypercomplex iterations :: distance estimation and higher dimensional fractals /
This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally ap...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, NJ :
World Scientific,
©2002.
|
Schriftenreihe: | K & E series on knots and everything ;
v. 17. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics. |
Beschreibung: | Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry. |
Beschreibung: | 1 online resource (xv, 144 pages) : illustrations (some color) |
Bibliographie: | Includes bibliographical references (pages 139-141) and index. |
ISBN: | 9789812778604 9812778608 9810232969 9789810232962 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn181344585 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 071115s2002 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d OCLCF |d OCLCO |d I9W |d OCLCQ |d NLGGC |d OCLCQ |d COCUF |d U3W |d OCLCQ |d VTS |d AGLDB |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d OCLCQ |d STF |d M8D |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 1055378306 |a 1064236264 |a 1081213280 | ||
020 | |a 9789812778604 |q (electronic bk.) | ||
020 | |a 9812778608 |q (electronic bk.) | ||
020 | |a 9810232969 | ||
020 | |a 9789810232962 | ||
035 | |a (OCoLC)181344585 |z (OCoLC)1055378306 |z (OCoLC)1064236264 |z (OCoLC)1081213280 | ||
050 | 4 | |a QA297.8 |b .D25 2002eb | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.4 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Dang, Yumei. | |
245 | 1 | 0 | |a Hypercomplex iterations : |b distance estimation and higher dimensional fractals / |c Yumei Dang, Louis H. Kauffman, Daniel Sandin. |
246 | 3 | 0 | |a Distance estimation and higher dimensional fractals |
260 | |a River Edge, NJ : |b World Scientific, |c ©2002. | ||
300 | |a 1 online resource (xv, 144 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a K & E series on knots and everything ; |v v. 17 | |
504 | |a Includes bibliographical references (pages 139-141) and index. | ||
500 | |a Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality. | |
520 | |a This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics. | ||
650 | 0 | |a Iterative methods (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85069058 | |
650 | 0 | |a Quaternions. |0 http://id.loc.gov/authorities/subjects/sh85109754 | |
650 | 0 | |a Mandelbrot sets. |0 http://id.loc.gov/authorities/subjects/sh99011714 | |
650 | 0 | |a Fractals. |0 http://id.loc.gov/authorities/subjects/sh85051147 | |
650 | 6 | |a Itération (Mathématiques) | |
650 | 6 | |a Quaternions. | |
650 | 6 | |a Ensembles de Mandelbrot. | |
650 | 6 | |a Fractales. | |
650 | 7 | |a fractals. |2 aat | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Fractals |2 fast | |
650 | 7 | |a Iterative methods (Mathematics) |2 fast | |
650 | 7 | |a Mandelbrot sets |2 fast | |
650 | 7 | |a Quaternions |2 fast | |
700 | 1 | |a Kauffman, Louis H., |d 1945- |0 http://id.loc.gov/authorities/names/n82220843 | |
700 | 1 | |a Sandin, Daniel J. | |
758 | |i has work: |a Hypercomplex iterations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJCycRJ3wMtcFqm3fMGd3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Dang, Yumei. |t Hypercomplex iterations. |d River Edge, NJ : World Scientific, ©2002 |z 9810232969 |z 9789810232962 |w (DLC) 2003545471 |w (OCoLC)52887332 |
830 | 0 | |a K & E series on knots and everything ; |v v. 17. |0 http://id.loc.gov/authorities/names/n91052105 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210623 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684828 | ||
938 | |a EBSCOhost |b EBSC |n 210623 | ||
938 | |a YBP Library Services |b YANK |n 2733807 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn181344585 |
---|---|
_version_ | 1816881656651317248 |
adam_text | |
any_adam_object | |
author | Dang, Yumei |
author2 | Kauffman, Louis H., 1945- Sandin, Daniel J. |
author2_role | |
author2_variant | l h k lh lhk d j s dj djs |
author_GND | http://id.loc.gov/authorities/names/n82220843 |
author_facet | Dang, Yumei Kauffman, Louis H., 1945- Sandin, Daniel J. |
author_role | |
author_sort | Dang, Yumei |
author_variant | y d yd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA297 |
callnumber-raw | QA297.8 .D25 2002eb |
callnumber-search | QA297.8 .D25 2002eb |
callnumber-sort | QA 3297.8 D25 42002EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality. |
ctrlnum | (OCoLC)181344585 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05010cam a2200685 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn181344585</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">071115s2002 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1055378306</subfield><subfield code="a">1064236264</subfield><subfield code="a">1081213280</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812778604</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812778608</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810232969</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810232962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181344585</subfield><subfield code="z">(OCoLC)1055378306</subfield><subfield code="z">(OCoLC)1064236264</subfield><subfield code="z">(OCoLC)1081213280</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA297.8</subfield><subfield code="b">.D25 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dang, Yumei.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypercomplex iterations :</subfield><subfield code="b">distance estimation and higher dimensional fractals /</subfield><subfield code="c">Yumei Dang, Louis H. Kauffman, Daniel Sandin.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Distance estimation and higher dimensional fractals</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 144 pages) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">K & E series on knots and everything ;</subfield><subfield code="v">v. 17</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 139-141) and index.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Iterative methods (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85069058</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quaternions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109754</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mandelbrot sets.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh99011714</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fractals.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051147</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Itération (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Quaternions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ensembles de Mandelbrot.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fractales.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">fractals.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Iterative methods (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mandelbrot sets</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quaternions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kauffman, Louis H.,</subfield><subfield code="d">1945-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82220843</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandin, Daniel J.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hypercomplex iterations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJCycRJ3wMtcFqm3fMGd3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dang, Yumei.</subfield><subfield code="t">Hypercomplex iterations.</subfield><subfield code="d">River Edge, NJ : World Scientific, ©2002</subfield><subfield code="z">9810232969</subfield><subfield code="z">9789810232962</subfield><subfield code="w">(DLC) 2003545471</subfield><subfield code="w">(OCoLC)52887332</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">K & E series on knots and everything ;</subfield><subfield code="v">v. 17.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91052105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210623</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684828</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210623</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2733807</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn181344585 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:11Z |
institution | BVB |
isbn | 9789812778604 9812778608 9810232969 9789810232962 |
language | English |
oclc_num | 181344585 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 144 pages) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
series | K & E series on knots and everything ; |
series2 | K & E series on knots and everything ; |
spelling | Dang, Yumei. Hypercomplex iterations : distance estimation and higher dimensional fractals / Yumei Dang, Louis H. Kauffman, Daniel Sandin. Distance estimation and higher dimensional fractals River Edge, NJ : World Scientific, ©2002. 1 online resource (xv, 144 pages) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier K & E series on knots and everything ; v. 17 Includes bibliographical references (pages 139-141) and index. Accompanied by CD-ROM containing an interactive tour of the space of hypercomplex Julia sets and an educational mini-documentary introducing fractals and hypercomplex geometry. Print version record. pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality. This book is based on the authors' research on rendering images of higher dimensional fractals by a distance estimation technique. It is self-contained, giving a careful treatment of both the known techniques and the authors' new methods. The distance estimation technique was originally applied to Julia sets and the Mandelbrot set in the complex plane. It was justified, through the work of Douady and Hubbard, by deep results in complex analysis. In this book, the authors generalise the distance estimation to quaternionic and other higher dimensional fractals, including fractals derived from iteration in the Cayley numbers (octonionic fractals). The generalization is justified by new geometric arguments that circumvent the need for complex analysis. This puts on a firm footing the authors' present work and the second author's earlier work with John Hart and Dan Sandin. The results of this book will be of great interest to mathematicians and computer scientists interested in fractals and computer graphics. Iterative methods (Mathematics) http://id.loc.gov/authorities/subjects/sh85069058 Quaternions. http://id.loc.gov/authorities/subjects/sh85109754 Mandelbrot sets. http://id.loc.gov/authorities/subjects/sh99011714 Fractals. http://id.loc.gov/authorities/subjects/sh85051147 Itération (Mathématiques) Quaternions. Ensembles de Mandelbrot. Fractales. fractals. aat MATHEMATICS General. bisacsh Fractals fast Iterative methods (Mathematics) fast Mandelbrot sets fast Quaternions fast Kauffman, Louis H., 1945- http://id.loc.gov/authorities/names/n82220843 Sandin, Daniel J. has work: Hypercomplex iterations (Text) https://id.oclc.org/worldcat/entity/E39PCGJCycRJ3wMtcFqm3fMGd3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Dang, Yumei. Hypercomplex iterations. River Edge, NJ : World Scientific, ©2002 9810232969 9789810232962 (DLC) 2003545471 (OCoLC)52887332 K & E series on knots and everything ; v. 17. http://id.loc.gov/authorities/names/n91052105 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210623 Volltext |
spellingShingle | Dang, Yumei Hypercomplex iterations : distance estimation and higher dimensional fractals / K & E series on knots and everything ; pt. 1. Introduction. ch. 1. Hypercomplex iterations in a nutshell -- ch. 2. Deterministic fractals and distance estimation -- pt. 2. Classical analysis: complex and quaternionic. ch. 3. Distance estimation in complex space -- ch. 4. Quaternion analysis -- ch. 5. Quaternions and the Dirac string trick -- pt. 3. Hypercomplex iterations. ch. 6. Quaternion Mandelbrot sets -- ch. 7. Distance estimation in higher dimensional spaces -- pt. 4. inverse iteration, ray tracing and virtual reality. ch. 8. Inverse iteration: an interactive visualization -- ch. 9. Ray tracing methods by distance estimation -- ch. 10. Quaternion deterministic fractals in virtual reality. Iterative methods (Mathematics) http://id.loc.gov/authorities/subjects/sh85069058 Quaternions. http://id.loc.gov/authorities/subjects/sh85109754 Mandelbrot sets. http://id.loc.gov/authorities/subjects/sh99011714 Fractals. http://id.loc.gov/authorities/subjects/sh85051147 Itération (Mathématiques) Quaternions. Ensembles de Mandelbrot. Fractales. fractals. aat MATHEMATICS General. bisacsh Fractals fast Iterative methods (Mathematics) fast Mandelbrot sets fast Quaternions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85069058 http://id.loc.gov/authorities/subjects/sh85109754 http://id.loc.gov/authorities/subjects/sh99011714 http://id.loc.gov/authorities/subjects/sh85051147 |
title | Hypercomplex iterations : distance estimation and higher dimensional fractals / |
title_alt | Distance estimation and higher dimensional fractals |
title_auth | Hypercomplex iterations : distance estimation and higher dimensional fractals / |
title_exact_search | Hypercomplex iterations : distance estimation and higher dimensional fractals / |
title_full | Hypercomplex iterations : distance estimation and higher dimensional fractals / Yumei Dang, Louis H. Kauffman, Daniel Sandin. |
title_fullStr | Hypercomplex iterations : distance estimation and higher dimensional fractals / Yumei Dang, Louis H. Kauffman, Daniel Sandin. |
title_full_unstemmed | Hypercomplex iterations : distance estimation and higher dimensional fractals / Yumei Dang, Louis H. Kauffman, Daniel Sandin. |
title_short | Hypercomplex iterations : |
title_sort | hypercomplex iterations distance estimation and higher dimensional fractals |
title_sub | distance estimation and higher dimensional fractals / |
topic | Iterative methods (Mathematics) http://id.loc.gov/authorities/subjects/sh85069058 Quaternions. http://id.loc.gov/authorities/subjects/sh85109754 Mandelbrot sets. http://id.loc.gov/authorities/subjects/sh99011714 Fractals. http://id.loc.gov/authorities/subjects/sh85051147 Itération (Mathématiques) Quaternions. Ensembles de Mandelbrot. Fractales. fractals. aat MATHEMATICS General. bisacsh Fractals fast Iterative methods (Mathematics) fast Mandelbrot sets fast Quaternions fast |
topic_facet | Iterative methods (Mathematics) Quaternions. Mandelbrot sets. Fractals. Itération (Mathématiques) Ensembles de Mandelbrot. Fractales. fractals. MATHEMATICS General. Fractals Mandelbrot sets Quaternions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210623 |
work_keys_str_mv | AT dangyumei hypercomplexiterationsdistanceestimationandhigherdimensionalfractals AT kauffmanlouish hypercomplexiterationsdistanceestimationandhigherdimensionalfractals AT sandindanielj hypercomplexiterationsdistanceestimationandhigherdimensionalfractals AT dangyumei distanceestimationandhigherdimensionalfractals AT kauffmanlouish distanceestimationandhigherdimensionalfractals AT sandindanielj distanceestimationandhigherdimensionalfractals |