An introduction to nonharmonic Fourier series /:
An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook. Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the co...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego :
Academic Press,
©2001.
|
Ausgabe: | Rev. 1st ed. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook. Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations. |
Beschreibung: | 1 online resource (xiv, 234 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 199-219) and index. |
ISBN: | 9781429483513 1429483512 9780080495743 0080495745 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn166329254 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 070827s2001 caua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d E7B |d OCLCQ |d OCLCF |d NLGGC |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d NLE |d JBG |d AU@ |d UKMGB |d STF |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a GBB882635 |2 bnb | ||
016 | 7 | |a 017548634 |2 Uk | |
019 | |a 170922831 |a 172983514 |a 648270797 | ||
020 | |a 9781429483513 |q (electronic bk.) | ||
020 | |a 1429483512 |q (electronic bk.) | ||
020 | |a 9780080495743 | ||
020 | |a 0080495745 | ||
020 | |z 0127729550 |q (alk. paper) | ||
035 | |a (OCoLC)166329254 |z (OCoLC)170922831 |z (OCoLC)172983514 |z (OCoLC)648270797 | ||
037 | |a 9780080495743 |b Ingram Content Group | ||
050 | 4 | |a QA404 |b .Y68 2001eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
082 | 7 | |a 515/.2433 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Young, Robert M. |0 http://id.loc.gov/authorities/names/n80045732 | |
245 | 1 | 3 | |a An introduction to nonharmonic Fourier series / |c Robert M. Young. |
250 | |a Rev. 1st ed. | ||
260 | |a San Diego : |b Academic Press, |c ©2001. | ||
300 | |a 1 online resource (xiv, 234 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 199-219) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Bases in Banach Spaces -- Schauder Bases; Schauder's Basis for C[a, b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space; ; Entire Functions of Exponential Type; ; The Classical Factorization Theorems -- Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem; ; Restrictions Along a Line -- The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space; ; The Completeness of Sets of Complex Exponentials -; The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials; Stability; Density and the Completeness Radius; ; Interpolation and Bases in Hilbert Space -- Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols; Index | |
520 | |a An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook. Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations. | ||
650 | 0 | |a Fourier series. |0 http://id.loc.gov/authorities/subjects/sh85051090 | |
650 | 6 | |a Séries de Fourier. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a Fourier series |2 fast | |
776 | 0 | 8 | |i Print version: |a Young, Robert M. |t Introduction to nonharmonic Fourier series. |b Rev. 1st ed. |d San Diego : Academic Press, ©2001 |z 0127729550 |z 9780127729558 |w (DLC) 00104370 |w (OCoLC)44915763 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=195200 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10180601 | ||
938 | |a EBSCOhost |b EBSC |n 195200 | ||
938 | |a YBP Library Services |b YANK |n 2611654 | ||
938 | |a YBP Library Services |b YANK |n 2613649 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn166329254 |
---|---|
_version_ | 1816881652485324800 |
adam_text | |
any_adam_object | |
author | Young, Robert M. |
author_GND | http://id.loc.gov/authorities/names/n80045732 |
author_facet | Young, Robert M. |
author_role | |
author_sort | Young, Robert M. |
author_variant | r m y rm rmy |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA404 |
callnumber-raw | QA404 .Y68 2001eb |
callnumber-search | QA404 .Y68 2001eb |
callnumber-sort | QA 3404 Y68 42001EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Bases in Banach Spaces -- Schauder Bases; Schauder's Basis for C[a, b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space; ; Entire Functions of Exponential Type; ; The Classical Factorization Theorems -- Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem; ; Restrictions Along a Line -- The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space; ; The Completeness of Sets of Complex Exponentials -; The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials; Stability; Density and the Completeness Radius; ; Interpolation and Bases in Hilbert Space -- Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols; Index |
ctrlnum | (OCoLC)166329254 |
dewey-full | 515/.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.2433 |
dewey-search | 515/.2433 |
dewey-sort | 3515 42433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Rev. 1st ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04031cam a2200553 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn166329254</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">070827s2001 caua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NLE</subfield><subfield code="d">JBG</subfield><subfield code="d">AU@</subfield><subfield code="d">UKMGB</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB882635</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">017548634</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">170922831</subfield><subfield code="a">172983514</subfield><subfield code="a">648270797</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781429483513</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1429483512</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080495743</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080495745</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0127729550</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)166329254</subfield><subfield code="z">(OCoLC)170922831</subfield><subfield code="z">(OCoLC)172983514</subfield><subfield code="z">(OCoLC)648270797</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780080495743</subfield><subfield code="b">Ingram Content Group</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA404</subfield><subfield code="b">.Y68 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Young, Robert M.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80045732</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An introduction to nonharmonic Fourier series /</subfield><subfield code="c">Robert M. Young.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. 1st ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">San Diego :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">©2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 234 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 199-219) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Bases in Banach Spaces -- Schauder Bases; Schauder's Basis for C[a, b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space; ; Entire Functions of Exponential Type; ; The Classical Factorization Theorems -- Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem; ; Restrictions Along a Line -- The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space; ; The Completeness of Sets of Complex Exponentials -; The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials; Stability; Density and the Completeness Radius; ; Interpolation and Bases in Hilbert Space -- Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook. Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fourier series.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051090</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Séries de Fourier.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Young, Robert M.</subfield><subfield code="t">Introduction to nonharmonic Fourier series.</subfield><subfield code="b">Rev. 1st ed.</subfield><subfield code="d">San Diego : Academic Press, ©2001</subfield><subfield code="z">0127729550</subfield><subfield code="z">9780127729558</subfield><subfield code="w">(DLC) 00104370</subfield><subfield code="w">(OCoLC)44915763</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=195200</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10180601</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">195200</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2611654</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2613649</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn166329254 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:07Z |
institution | BVB |
isbn | 9781429483513 1429483512 9780080495743 0080495745 |
language | English |
oclc_num | 166329254 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 234 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Academic Press, |
record_format | marc |
spelling | Young, Robert M. http://id.loc.gov/authorities/names/n80045732 An introduction to nonharmonic Fourier series / Robert M. Young. Rev. 1st ed. San Diego : Academic Press, ©2001. 1 online resource (xiv, 234 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 199-219) and index. Print version record. Bases in Banach Spaces -- Schauder Bases; Schauder's Basis for C[a, b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space; ; Entire Functions of Exponential Type; ; The Classical Factorization Theorems -- Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem; ; Restrictions Along a Line -- The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space; ; The Completeness of Sets of Complex Exponentials -; The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials; Stability; Density and the Completeness Radius; ; Interpolation and Bases in Hilbert Space -- Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols; Index An Introduction to Non-Harmonic Fourier Series, Revised Edition is an update of a widely known and highly respected classic textbook. Throughout the book, material has also been added on recent developments, including stability theory, the frame radius, and applications to signal analysis and the control of partial differential equations. Fourier series. http://id.loc.gov/authorities/subjects/sh85051090 Séries de Fourier. MATHEMATICS Infinity. bisacsh Fourier series fast Print version: Young, Robert M. Introduction to nonharmonic Fourier series. Rev. 1st ed. San Diego : Academic Press, ©2001 0127729550 9780127729558 (DLC) 00104370 (OCoLC)44915763 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=195200 Volltext |
spellingShingle | Young, Robert M. An introduction to nonharmonic Fourier series / Bases in Banach Spaces -- Schauder Bases; Schauder's Basis for C[a, b]; Orthonormal Bases in Hilbert Space; The Reproducing Kernel; Complete Sequences; The Coefficient Functionals; Duality; Riesz Bases; The Stability of Bases in Banach Spaces; The Stability of Orthonormal Bases in Hilbert Space; ; Entire Functions of Exponential Type; ; The Classical Factorization Theorems -- Weierstrass's Factorization Theorem; Jensen's Formula; Functions of Finite Order; Estimates for Canonical Products; Hadamard's Factorization Theorem; ; Restrictions Along a Line -- The "Phragmen-Lindelof" Method; Carleman's Formula; Integrability on a line; The Paley-Wiener Theorem; The Paley-Wiener Space; ; The Completeness of Sets of Complex Exponentials -; The Trigonometric System; Exponentials Close to the Trigonometric System; A Counterexample; Some Intrinsic Properties of Sets of Complex Exponentials; Stability; Density and the Completeness Radius; ; Interpolation and Bases in Hilbert Space -- Moment Sequences in Hilbert Space; Bessel Sequences and Riesz-Fischer Sequences; Applications to Systems of Complex Exponentials; The Moment Space and Its Relation to Equivalent Sequences; Interpolation in the Paley-Wiener Space: Functions of Sine Type; Interpolation in the Paley-Wiener Space: Stability; The Theory of Frames; The Stability of Nonharmonic Fourier Series; Pointwise Convergence; Notes and Comments; References; List of Special Symbols; Index Fourier series. http://id.loc.gov/authorities/subjects/sh85051090 Séries de Fourier. MATHEMATICS Infinity. bisacsh Fourier series fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85051090 |
title | An introduction to nonharmonic Fourier series / |
title_auth | An introduction to nonharmonic Fourier series / |
title_exact_search | An introduction to nonharmonic Fourier series / |
title_full | An introduction to nonharmonic Fourier series / Robert M. Young. |
title_fullStr | An introduction to nonharmonic Fourier series / Robert M. Young. |
title_full_unstemmed | An introduction to nonharmonic Fourier series / Robert M. Young. |
title_short | An introduction to nonharmonic Fourier series / |
title_sort | introduction to nonharmonic fourier series |
topic | Fourier series. http://id.loc.gov/authorities/subjects/sh85051090 Séries de Fourier. MATHEMATICS Infinity. bisacsh Fourier series fast |
topic_facet | Fourier series. Séries de Fourier. MATHEMATICS Infinity. Fourier series |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=195200 |
work_keys_str_mv | AT youngrobertm anintroductiontononharmonicfourierseries AT youngrobertm introductiontononharmonicfourierseries |