Lectures on the Curry-Howard isomorphism /:
The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to depe...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam ; Boston [MA] :
Elsevier,
2006.
|
Ausgabe: | 1st ed. |
Schriftenreihe: | Studies in logic and the foundations of mathematics ;
v. 149. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning. |
Beschreibung: | 1 online resource (xiv, 442 pages :) |
Bibliographie: | Includes bibliographical references (pages 403-430) and index. |
ISBN: | 9780444520777 0444520775 9780080478920 0080478921 |
ISSN: | 0049-237X ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn162586983 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070806s2006 ne a ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OPELS |d OCLCQ |d N$T |d YDXCP |d MERUC |d E7B |d IDEBK |d REDDC |d OCLCO |d OCLCQ |d DEBSZ |d OPELS |d OCLCF |d DEBBG |d TULIB |d OCLCQ |d EBLCP |d OCLCQ |d COO |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d COCUF |d FEM |d MOR |d PIFAG |d OCLCQ |d STF |d WRM |d D6H |d VTS |d INT |d OCLCQ |d LEAUB |d M8D |d BWN |d OCLCQ |d UKCRE |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d EZC | ||
016 | 7 | |a 013464440 |2 Uk | |
019 | |a 154225201 |a 441806456 |a 648299514 |a 779919943 |a 961695367 |a 962729760 |a 966202326 |a 969021749 |a 988417356 |a 989205680 |a 991963725 |a 1034919461 |a 1035703211 |a 1037744831 |a 1038652636 |a 1110380017 |a 1153471587 | ||
020 | |a 9780444520777 | ||
020 | |a 0444520775 | ||
020 | |a 9780080478920 |q (electronic bk.) | ||
020 | |a 0080478921 |q (electronic bk.) | ||
035 | |a (OCoLC)162586983 |z (OCoLC)154225201 |z (OCoLC)441806456 |z (OCoLC)648299514 |z (OCoLC)779919943 |z (OCoLC)961695367 |z (OCoLC)962729760 |z (OCoLC)966202326 |z (OCoLC)969021749 |z (OCoLC)988417356 |z (OCoLC)989205680 |z (OCoLC)991963725 |z (OCoLC)1034919461 |z (OCoLC)1035703211 |z (OCoLC)1037744831 |z (OCoLC)1038652636 |z (OCoLC)1110380017 |z (OCoLC)1153471587 | ||
037 | |a 116411:116509 |b Elsevier Science & Technology |n http://www.sciencedirect.com | ||
050 | 4 | |a QA9.54 |b .S67 2006eb | |
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
082 | 7 | |a 511.3/26 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Sørensen, Morten Heine. |0 http://id.loc.gov/authorities/names/n2006046636 | |
245 | 1 | 0 | |a Lectures on the Curry-Howard isomorphism / |c Morten Heine Sørensen, Paweł Urzyczyn. |
250 | |a 1st ed. | ||
260 | |a Amsterdam ; |a Boston [MA] : |b Elsevier, |c 2006. | ||
300 | |a 1 online resource (xiv, 442 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
490 | 1 | |a Studies in logic and the foundations of mathematics, |x 0049-237X ; |v v. 149 | |
520 | |a The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning. | ||
505 | 0 | |a Preface -- Acknowledgements -- 1. Typefree lambda-calculus -- 2. Intuitionistic logic -- 3. Simply typed lambdacalculus -- 4. The Curry-Howard isomorphism -- 5. Proofs as combinators -- 6. Classical logic and control operators -- 7. Sequent calculus -- 8. First-order logic -- 9. First-order arithmetic -- 10. G̲del's system T -- 11. Second-order logic and polymorphism -- 12. Second-order arithmetic -- 13. Dependent types -- 14. Pure type systems and the lambda-cube -- A Mathematical Background -- B Solutions and hints to selected exercises -- Bibliography -- Index. | |
504 | |a Includes bibliographical references (pages 403-430) and index. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Curry-Howard isomorphism. |0 http://id.loc.gov/authorities/subjects/sh2001002954 | |
650 | 0 | |a Lambda calculus. |0 http://id.loc.gov/authorities/subjects/sh85074174 | |
650 | 0 | |a Proof theory. |0 http://id.loc.gov/authorities/subjects/sh85107437 | |
650 | 6 | |a Curry-Howard, Isomorphisme de. | |
650 | 6 | |a Lambda-calcul. | |
650 | 6 | |a Théorie de la preuve. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Curry-Howard isomorphism |2 fast | |
650 | 7 | |a Lambda calculus |2 fast | |
650 | 7 | |a Proof theory |2 fast | |
650 | 1 | 7 | |a Lambda-calculus. |2 gtt |
650 | 1 | 7 | |a Programmeren (computers) |2 gtt |
655 | 7 | |a dissertations. |2 aat | |
655 | 7 | |a Academic theses |2 fast | |
655 | 7 | |a Academic theses. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026039 | |
655 | 7 | |a Thèses et écrits académiques. |2 rvmgf | |
700 | 1 | |a Urzyczyn, Paweł. |0 http://id.loc.gov/authorities/names/nb2005005743 | |
758 | |i has work: |a Lectures on the Curry-Howard isomorphism (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXJHMjbhjVHGTcWww8HRX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Sørensen, Morten Heine. |t Lectures on the Curry-Howard isomorphism. |b 1st ed. |d Amsterdam ; Boston [MA] : Elsevier, 2006 |z 0444520775 |z 9780444520777 |w (DLC) 2006048390 |w (OCoLC)70158578 |
830 | 0 | |a Studies in logic and the foundations of mathematics ; |v v. 149. |x 0049-237X |0 http://id.loc.gov/authorities/names/n42707789 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231 |3 Volltext | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/0049237X/149 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/0049237X/149 |3 Volltext | |
938 | |a ProQuest Ebook Central |b EBLB |n EBL4052483 | ||
938 | |a ebrary |b EBRY |n ebr10185917 | ||
938 | |a EBSCOhost |b EBSC |n 196231 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 105105 | ||
938 | |a YBP Library Services |b YANK |n 2586131 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn162586983 |
---|---|
_version_ | 1813903303660011520 |
adam_text | |
any_adam_object | |
author | Sørensen, Morten Heine |
author2 | Urzyczyn, Paweł |
author2_role | |
author2_variant | p u pu |
author_GND | http://id.loc.gov/authorities/names/n2006046636 http://id.loc.gov/authorities/names/nb2005005743 |
author_facet | Sørensen, Morten Heine Urzyczyn, Paweł |
author_role | |
author_sort | Sørensen, Morten Heine |
author_variant | m h s mh mhs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.54 .S67 2006eb |
callnumber-search | QA9.54 .S67 2006eb |
callnumber-sort | QA 19.54 S67 42006EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface -- Acknowledgements -- 1. Typefree lambda-calculus -- 2. Intuitionistic logic -- 3. Simply typed lambdacalculus -- 4. The Curry-Howard isomorphism -- 5. Proofs as combinators -- 6. Classical logic and control operators -- 7. Sequent calculus -- 8. First-order logic -- 9. First-order arithmetic -- 10. G̲del's system T -- 11. Second-order logic and polymorphism -- 12. Second-order arithmetic -- 13. Dependent types -- 14. Pure type systems and the lambda-cube -- A Mathematical Background -- B Solutions and hints to selected exercises -- Bibliography -- Index. |
ctrlnum | (OCoLC)162586983 |
dewey-full | 511.3/26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/26 |
dewey-search | 511.3/26 |
dewey-sort | 3511.3 226 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06887cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn162586983</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070806s2006 ne a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">TULIB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">FEM</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">D6H</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">BWN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">EZC</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013464440</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">154225201</subfield><subfield code="a">441806456</subfield><subfield code="a">648299514</subfield><subfield code="a">779919943</subfield><subfield code="a">961695367</subfield><subfield code="a">962729760</subfield><subfield code="a">966202326</subfield><subfield code="a">969021749</subfield><subfield code="a">988417356</subfield><subfield code="a">989205680</subfield><subfield code="a">991963725</subfield><subfield code="a">1034919461</subfield><subfield code="a">1035703211</subfield><subfield code="a">1037744831</subfield><subfield code="a">1038652636</subfield><subfield code="a">1110380017</subfield><subfield code="a">1153471587</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444520777</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444520775</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080478920</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080478921</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162586983</subfield><subfield code="z">(OCoLC)154225201</subfield><subfield code="z">(OCoLC)441806456</subfield><subfield code="z">(OCoLC)648299514</subfield><subfield code="z">(OCoLC)779919943</subfield><subfield code="z">(OCoLC)961695367</subfield><subfield code="z">(OCoLC)962729760</subfield><subfield code="z">(OCoLC)966202326</subfield><subfield code="z">(OCoLC)969021749</subfield><subfield code="z">(OCoLC)988417356</subfield><subfield code="z">(OCoLC)989205680</subfield><subfield code="z">(OCoLC)991963725</subfield><subfield code="z">(OCoLC)1034919461</subfield><subfield code="z">(OCoLC)1035703211</subfield><subfield code="z">(OCoLC)1037744831</subfield><subfield code="z">(OCoLC)1038652636</subfield><subfield code="z">(OCoLC)1110380017</subfield><subfield code="z">(OCoLC)1153471587</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">116411:116509</subfield><subfield code="b">Elsevier Science & Technology</subfield><subfield code="n">http://www.sciencedirect.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.54</subfield><subfield code="b">.S67 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/26</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sørensen, Morten Heine.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006046636</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the Curry-Howard isomorphism /</subfield><subfield code="c">Morten Heine Sørensen, Paweł Urzyczyn.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Amsterdam ;</subfield><subfield code="a">Boston [MA] :</subfield><subfield code="b">Elsevier,</subfield><subfield code="c">2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 442 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics,</subfield><subfield code="x">0049-237X ;</subfield><subfield code="v">v. 149</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- Acknowledgements -- 1. Typefree lambda-calculus -- 2. Intuitionistic logic -- 3. Simply typed lambdacalculus -- 4. The Curry-Howard isomorphism -- 5. Proofs as combinators -- 6. Classical logic and control operators -- 7. Sequent calculus -- 8. First-order logic -- 9. First-order arithmetic -- 10. G̲del's system T -- 11. Second-order logic and polymorphism -- 12. Second-order arithmetic -- 13. Dependent types -- 14. Pure type systems and the lambda-cube -- A Mathematical Background -- B Solutions and hints to selected exercises -- Bibliography -- Index.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 403-430) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Curry-Howard isomorphism.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2001002954</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lambda calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85074174</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Proof theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Curry-Howard, Isomorphisme de.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Lambda-calcul.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la preuve.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Transformations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Curry-Howard isomorphism</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lambda calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Proof theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lambda-calculus.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Programmeren (computers)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">dissertations.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026039</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Thèses et écrits académiques.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urzyczyn, Paweł.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2005005743</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lectures on the Curry-Howard isomorphism (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXJHMjbhjVHGTcWww8HRX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sørensen, Morten Heine.</subfield><subfield code="t">Lectures on the Curry-Howard isomorphism.</subfield><subfield code="b">1st ed.</subfield><subfield code="d">Amsterdam ; Boston [MA] : Elsevier, 2006</subfield><subfield code="z">0444520775</subfield><subfield code="z">9780444520777</subfield><subfield code="w">(DLC) 2006048390</subfield><subfield code="w">(OCoLC)70158578</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in logic and the foundations of mathematics ;</subfield><subfield code="v">v. 149.</subfield><subfield code="x">0049-237X</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42707789</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/0049237X/149</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/0049237X/149</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4052483</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10185917</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">196231</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">105105</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2586131</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf |
genre_facet | dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
id | ZDB-4-EBA-ocn162586983 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:16:33Z |
institution | BVB |
isbn | 9780444520777 0444520775 9780080478920 0080478921 |
issn | 0049-237X ; |
language | English |
oclc_num | 162586983 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xiv, 442 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Elsevier, |
record_format | marc |
series | Studies in logic and the foundations of mathematics ; |
series2 | Studies in logic and the foundations of mathematics, |
spelling | Sørensen, Morten Heine. http://id.loc.gov/authorities/names/n2006046636 Lectures on the Curry-Howard isomorphism / Morten Heine Sørensen, Paweł Urzyczyn. 1st ed. Amsterdam ; Boston [MA] : Elsevier, 2006. 1 online resource (xiv, 442 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file Studies in logic and the foundations of mathematics, 0049-237X ; v. 149 The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning The Curry-Howard Isomorphism treated as the common theme. Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics Thorough study of the connection between calculi and logics. Elaborate study of classical logics and control operators. Account of dialogue games for classical and intuitionistic logic. Theoretical foundations of computer-assisted reasoning. Preface -- Acknowledgements -- 1. Typefree lambda-calculus -- 2. Intuitionistic logic -- 3. Simply typed lambdacalculus -- 4. The Curry-Howard isomorphism -- 5. Proofs as combinators -- 6. Classical logic and control operators -- 7. Sequent calculus -- 8. First-order logic -- 9. First-order arithmetic -- 10. G̲del's system T -- 11. Second-order logic and polymorphism -- 12. Second-order arithmetic -- 13. Dependent types -- 14. Pure type systems and the lambda-cube -- A Mathematical Background -- B Solutions and hints to selected exercises -- Bibliography -- Index. Includes bibliographical references (pages 403-430) and index. Print version record. Curry-Howard isomorphism. http://id.loc.gov/authorities/subjects/sh2001002954 Lambda calculus. http://id.loc.gov/authorities/subjects/sh85074174 Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Curry-Howard, Isomorphisme de. Lambda-calcul. Théorie de la preuve. MATHEMATICS Transformations. bisacsh Curry-Howard isomorphism fast Lambda calculus fast Proof theory fast Lambda-calculus. gtt Programmeren (computers) gtt dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf Urzyczyn, Paweł. http://id.loc.gov/authorities/names/nb2005005743 has work: Lectures on the Curry-Howard isomorphism (Text) https://id.oclc.org/worldcat/entity/E39PCGXJHMjbhjVHGTcWww8HRX https://id.oclc.org/worldcat/ontology/hasWork Print version: Sørensen, Morten Heine. Lectures on the Curry-Howard isomorphism. 1st ed. Amsterdam ; Boston [MA] : Elsevier, 2006 0444520775 9780444520777 (DLC) 2006048390 (OCoLC)70158578 Studies in logic and the foundations of mathematics ; v. 149. 0049-237X http://id.loc.gov/authorities/names/n42707789 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/0049237X/149 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/0049237X/149 Volltext |
spellingShingle | Sørensen, Morten Heine Lectures on the Curry-Howard isomorphism / Studies in logic and the foundations of mathematics ; Preface -- Acknowledgements -- 1. Typefree lambda-calculus -- 2. Intuitionistic logic -- 3. Simply typed lambdacalculus -- 4. The Curry-Howard isomorphism -- 5. Proofs as combinators -- 6. Classical logic and control operators -- 7. Sequent calculus -- 8. First-order logic -- 9. First-order arithmetic -- 10. G̲del's system T -- 11. Second-order logic and polymorphism -- 12. Second-order arithmetic -- 13. Dependent types -- 14. Pure type systems and the lambda-cube -- A Mathematical Background -- B Solutions and hints to selected exercises -- Bibliography -- Index. Curry-Howard isomorphism. http://id.loc.gov/authorities/subjects/sh2001002954 Lambda calculus. http://id.loc.gov/authorities/subjects/sh85074174 Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Curry-Howard, Isomorphisme de. Lambda-calcul. Théorie de la preuve. MATHEMATICS Transformations. bisacsh Curry-Howard isomorphism fast Lambda calculus fast Proof theory fast Lambda-calculus. gtt Programmeren (computers) gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh2001002954 http://id.loc.gov/authorities/subjects/sh85074174 http://id.loc.gov/authorities/subjects/sh85107437 http://id.loc.gov/authorities/genreForms/gf2014026039 |
title | Lectures on the Curry-Howard isomorphism / |
title_auth | Lectures on the Curry-Howard isomorphism / |
title_exact_search | Lectures on the Curry-Howard isomorphism / |
title_full | Lectures on the Curry-Howard isomorphism / Morten Heine Sørensen, Paweł Urzyczyn. |
title_fullStr | Lectures on the Curry-Howard isomorphism / Morten Heine Sørensen, Paweł Urzyczyn. |
title_full_unstemmed | Lectures on the Curry-Howard isomorphism / Morten Heine Sørensen, Paweł Urzyczyn. |
title_short | Lectures on the Curry-Howard isomorphism / |
title_sort | lectures on the curry howard isomorphism |
topic | Curry-Howard isomorphism. http://id.loc.gov/authorities/subjects/sh2001002954 Lambda calculus. http://id.loc.gov/authorities/subjects/sh85074174 Proof theory. http://id.loc.gov/authorities/subjects/sh85107437 Curry-Howard, Isomorphisme de. Lambda-calcul. Théorie de la preuve. MATHEMATICS Transformations. bisacsh Curry-Howard isomorphism fast Lambda calculus fast Proof theory fast Lambda-calculus. gtt Programmeren (computers) gtt |
topic_facet | Curry-Howard isomorphism. Lambda calculus. Proof theory. Curry-Howard, Isomorphisme de. Lambda-calcul. Théorie de la preuve. MATHEMATICS Transformations. Curry-Howard isomorphism Lambda calculus Proof theory Lambda-calculus. Programmeren (computers) dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=196231 https://www.sciencedirect.com/science/bookseries/0049237X/149 |
work_keys_str_mv | AT sørensenmortenheine lecturesonthecurryhowardisomorphism AT urzyczynpaweł lecturesonthecurryhowardisomorphism |