Multiscale wavelet methods for partial differential equations /:
This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of f...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
San Diego :
Academic Press,
©1997.
|
Schriftenreihe: | Wavelet analysis and its applications ;
v. 6. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Key Features * Covers important areas of computational mechanics such as elasticity and computational fluid dynamics * Includes a clear study of turbulence modeling * Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations * Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications. |
Beschreibung: | 1 online resource (xiv, 570 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780122006753 0122006755 9780080537146 0080537146 1281076791 9781281076793 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn162128737 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070802s1997 maua ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OCLCG |d OCLCQ |d OPELS |d OCLCQ |d N$T |d YDXCP |d IDEBK |d E7B |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d STF |d D6H |d OCLCQ |d VTS |d NLE |d OCLCO |d OCLCQ |d UKMGB |d OCLCO |d LEAUB |d REC |d OCLCA |d M8D |d OCLCO |d OCLCQ |d OCLCO |d NLW |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBB738774 |2 bnb | ||
016 | 7 | |a 017548833 |2 Uk | |
019 | |a 182552595 |a 647671158 |a 742286159 |a 815534722 |a 823110255 |a 823830593 |a 823900303 |a 824091591 |a 824139799 |a 1035677175 | ||
020 | |a 9780122006753 | ||
020 | |a 0122006755 | ||
020 | |a 9780080537146 |q (electronic bk.) | ||
020 | |a 0080537146 |q (electronic bk.) | ||
020 | |a 1281076791 | ||
020 | |a 9781281076793 | ||
035 | |a (OCoLC)162128737 |z (OCoLC)182552595 |z (OCoLC)647671158 |z (OCoLC)742286159 |z (OCoLC)815534722 |z (OCoLC)823110255 |z (OCoLC)823830593 |z (OCoLC)823900303 |z (OCoLC)824091591 |z (OCoLC)824139799 |z (OCoLC)1035677175 | ||
037 | |a 78146:78146 |b Elsevier Science & Technology |n http://www.sciencedirect.com | ||
050 | 4 | |a QC20.7.D5 |b M83 1997eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a PBKJ |2 bicssc | |
082 | 7 | |a 515/.2433 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Multiscale wavelet methods for partial differential equations / |c edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald. |
260 | |a San Diego : |b Academic Press, |c ©1997. | ||
300 | |a 1 online resource (xiv, 570 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Wavelet analysis and its applications ; |v v. 6 | |
520 | |a This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Key Features * Covers important areas of computational mechanics such as elasticity and computational fluid dynamics * Includes a clear study of turbulence modeling * Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations * Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications. | ||
505 | 0 | |a FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Multilevel solvers for elliptic problems on domains / Peter Oswald -- Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs / Panayot S. Vassilevski and Junping Wang -- An adaptive collocation method based on interpolating wavelets / Silvia Bertoluzza -- An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations / Gregory Beylkin and James M. Keiser -- A dynamical adaptive concept based on wavelet packet best bases : application to convection diffusion partial differential equations / Pascal Joly, Yvon Maday, and Valérie Perrier -- Nonlinear approximation and adaptive techniques for solving elliptic operator equations / Stephan Dahlke, Wolfgang Dahmen, and Ronald A. DeVore -- Fully discrete multiscale Galerkin BEM / Tobias von Petersdorff and Christoph Schwab -- Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization / Andreas Rieder -- Towards object oriented software tools for numerical multiscale methods for PDEs using wavelets / Titus Barsch, Angela Kunoth, and Karsten Urban -- Scaling function and wavelet preconditioners for second order elliptic problems / Jeonghwan Ko, Andrew J. Kurdila, and Peter Oswald -- Local models and large scale statistics of the Kuramoto-Sivashinsky equation / Juan Elezgaray [and others] -- Theoretical dimension and the complexity of simulated turbulence / Mladen V. Wickerhauser, Marie Farge, and Eric Goirand -- Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients / Jean-Marc Angeletti, Sylvain Mazet, and Philippe Tchamitchian -- Some directional elliptic regularity for domains with cusps / Matthias Holschneider. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Differential equations, Partial |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85037915 | |
650 | 0 | |a Wavelets (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh91006163 | |
650 | 6 | |a Équations aux dérivées partielles |x Solutions numériques. | |
650 | 6 | |a Ondelettes. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a Differential equations, Partial |x Numerical solutions |2 fast | |
650 | 7 | |a Wavelets (Mathematics) |2 fast | |
650 | 7 | |a Numerisches Verfahren |2 gnd |0 http://d-nb.info/gnd/4128130-5 | |
650 | 7 | |a Partielle Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4044779-0 | |
650 | 7 | |a Wavelet |2 gnd | |
650 | 7 | |a Elliptisches Randwertproblem |2 gnd |0 http://d-nb.info/gnd/4193399-0 | |
650 | 1 | 7 | |a Wavelets. |2 gtt |
650 | 1 | 7 | |a Partiële differentiaalvergelijkingen. |2 gtt |
700 | 1 | |a Dahmen, Wolfgang, |d 1949- |1 https://id.oclc.org/worldcat/entity/E39PBJvmPm76tMxdtrk8HjPJDq |0 http://id.loc.gov/authorities/names/n89126157 | |
700 | 1 | |a Kurdila, Andrew. |0 http://id.loc.gov/authorities/names/n97027399 | |
700 | 1 | |a Oswald, Peter, |d 1951- |1 https://id.oclc.org/worldcat/entity/E39PCjHdjD3jCGBgv4t6GVX9Qq |0 http://id.loc.gov/authorities/names/no95017708 | |
758 | |i has work: |a Multiscale wavelet methods for partial differential equations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFM3jh8PQRP97dXp8r4xMq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Multiscale wavelet methods for partial differential equations. |d San Diego : Academic Press, ©1997 |z 0122006755 |z 9780122006753 |w (DLC) 97012672 |w (OCoLC)36621922 |
830 | 0 | |a Wavelet analysis and its applications ; |v v. 6. |0 http://id.loc.gov/authorities/names/n91122724 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=212291 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/1874608X/6 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10196334 | ||
938 | |a EBSCOhost |b EBSC |n 212291 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 107679 | ||
938 | |a YBP Library Services |b YANK |n 2739725 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn162128737 |
---|---|
_version_ | 1816881650223546368 |
adam_text | |
any_adam_object | |
author2 | Dahmen, Wolfgang, 1949- Kurdila, Andrew Oswald, Peter, 1951- |
author2_role | |
author2_variant | w d wd a k ak p o po |
author_GND | http://id.loc.gov/authorities/names/n89126157 http://id.loc.gov/authorities/names/n97027399 http://id.loc.gov/authorities/names/no95017708 |
author_facet | Dahmen, Wolfgang, 1949- Kurdila, Andrew Oswald, Peter, 1951- |
author_sort | Dahmen, Wolfgang, 1949- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.D5 M83 1997eb |
callnumber-search | QC20.7.D5 M83 1997eb |
callnumber-sort | QC 220.7 D5 M83 41997EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index. Multilevel solvers for elliptic problems on domains / Peter Oswald -- Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs / Panayot S. Vassilevski and Junping Wang -- An adaptive collocation method based on interpolating wavelets / Silvia Bertoluzza -- An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations / Gregory Beylkin and James M. Keiser -- A dynamical adaptive concept based on wavelet packet best bases : application to convection diffusion partial differential equations / Pascal Joly, Yvon Maday, and Valérie Perrier -- Nonlinear approximation and adaptive techniques for solving elliptic operator equations / Stephan Dahlke, Wolfgang Dahmen, and Ronald A. DeVore -- Fully discrete multiscale Galerkin BEM / Tobias von Petersdorff and Christoph Schwab -- Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization / Andreas Rieder -- Towards object oriented software tools for numerical multiscale methods for PDEs using wavelets / Titus Barsch, Angela Kunoth, and Karsten Urban -- Scaling function and wavelet preconditioners for second order elliptic problems / Jeonghwan Ko, Andrew J. Kurdila, and Peter Oswald -- Local models and large scale statistics of the Kuramoto-Sivashinsky equation / Juan Elezgaray [and others] -- Theoretical dimension and the complexity of simulated turbulence / Mladen V. Wickerhauser, Marie Farge, and Eric Goirand -- Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients / Jean-Marc Angeletti, Sylvain Mazet, and Philippe Tchamitchian -- Some directional elliptic regularity for domains with cusps / Matthias Holschneider. |
ctrlnum | (OCoLC)162128737 |
dewey-full | 515/.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.2433 |
dewey-search | 515/.2433 |
dewey-sort | 3515 42433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08505cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn162128737</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070802s1997 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">D6H</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NLE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">LEAUB</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCA</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB738774</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">017548833</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">182552595</subfield><subfield code="a">647671158</subfield><subfield code="a">742286159</subfield><subfield code="a">815534722</subfield><subfield code="a">823110255</subfield><subfield code="a">823830593</subfield><subfield code="a">823900303</subfield><subfield code="a">824091591</subfield><subfield code="a">824139799</subfield><subfield code="a">1035677175</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780122006753</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0122006755</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080537146</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080537146</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281076791</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281076793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162128737</subfield><subfield code="z">(OCoLC)182552595</subfield><subfield code="z">(OCoLC)647671158</subfield><subfield code="z">(OCoLC)742286159</subfield><subfield code="z">(OCoLC)815534722</subfield><subfield code="z">(OCoLC)823110255</subfield><subfield code="z">(OCoLC)823830593</subfield><subfield code="z">(OCoLC)823900303</subfield><subfield code="z">(OCoLC)824091591</subfield><subfield code="z">(OCoLC)824139799</subfield><subfield code="z">(OCoLC)1035677175</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">78146:78146</subfield><subfield code="b">Elsevier Science & Technology</subfield><subfield code="n">http://www.sciencedirect.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.D5</subfield><subfield code="b">M83 1997eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKJ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Multiscale wavelet methods for partial differential equations /</subfield><subfield code="c">edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">San Diego :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">©1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 570 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Wavelet analysis and its applications ;</subfield><subfield code="v">v. 6</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Key Features * Covers important areas of computational mechanics such as elasticity and computational fluid dynamics * Includes a clear study of turbulence modeling * Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations * Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Multilevel solvers for elliptic problems on domains / Peter Oswald -- Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs / Panayot S. Vassilevski and Junping Wang -- An adaptive collocation method based on interpolating wavelets / Silvia Bertoluzza -- An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations / Gregory Beylkin and James M. Keiser -- A dynamical adaptive concept based on wavelet packet best bases : application to convection diffusion partial differential equations / Pascal Joly, Yvon Maday, and Valérie Perrier -- Nonlinear approximation and adaptive techniques for solving elliptic operator equations / Stephan Dahlke, Wolfgang Dahmen, and Ronald A. DeVore -- Fully discrete multiscale Galerkin BEM / Tobias von Petersdorff and Christoph Schwab -- Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization / Andreas Rieder -- Towards object oriented software tools for numerical multiscale methods for PDEs using wavelets / Titus Barsch, Angela Kunoth, and Karsten Urban -- Scaling function and wavelet preconditioners for second order elliptic problems / Jeonghwan Ko, Andrew J. Kurdila, and Peter Oswald -- Local models and large scale statistics of the Kuramoto-Sivashinsky equation / Juan Elezgaray [and others] -- Theoretical dimension and the complexity of simulated turbulence / Mladen V. Wickerhauser, Marie Farge, and Eric Goirand -- Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients / Jean-Marc Angeletti, Sylvain Mazet, and Philippe Tchamitchian -- Some directional elliptic regularity for domains with cusps / Matthias Holschneider.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037915</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Wavelets (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91006163</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ondelettes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wavelets (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128130-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4044779-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wavelet</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4193399-0</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Wavelets.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dahmen, Wolfgang,</subfield><subfield code="d">1949-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvmPm76tMxdtrk8HjPJDq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n89126157</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurdila, Andrew.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97027399</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oswald, Peter,</subfield><subfield code="d">1951-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHdjD3jCGBgv4t6GVX9Qq</subfield><subfield code="0">http://id.loc.gov/authorities/names/no95017708</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Multiscale wavelet methods for partial differential equations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFM3jh8PQRP97dXp8r4xMq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Multiscale wavelet methods for partial differential equations.</subfield><subfield code="d">San Diego : Academic Press, ©1997</subfield><subfield code="z">0122006755</subfield><subfield code="z">9780122006753</subfield><subfield code="w">(DLC) 97012672</subfield><subfield code="w">(OCoLC)36621922</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Wavelet analysis and its applications ;</subfield><subfield code="v">v. 6.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91122724</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=212291</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/1874608X/6</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10196334</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">212291</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">107679</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2739725</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn162128737 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:05Z |
institution | BVB |
isbn | 9780122006753 0122006755 9780080537146 0080537146 1281076791 9781281076793 |
language | English |
oclc_num | 162128737 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 570 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Academic Press, |
record_format | marc |
series | Wavelet analysis and its applications ; |
series2 | Wavelet analysis and its applications ; |
spelling | Multiscale wavelet methods for partial differential equations / edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald. San Diego : Academic Press, ©1997. 1 online resource (xiv, 570 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Wavelet analysis and its applications ; v. 6 This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. Key Features * Covers important areas of computational mechanics such as elasticity and computational fluid dynamics * Includes a clear study of turbulence modeling * Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations * Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications. FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index. Includes bibliographical references and index. Multilevel solvers for elliptic problems on domains / Peter Oswald -- Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs / Panayot S. Vassilevski and Junping Wang -- An adaptive collocation method based on interpolating wavelets / Silvia Bertoluzza -- An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations / Gregory Beylkin and James M. Keiser -- A dynamical adaptive concept based on wavelet packet best bases : application to convection diffusion partial differential equations / Pascal Joly, Yvon Maday, and Valérie Perrier -- Nonlinear approximation and adaptive techniques for solving elliptic operator equations / Stephan Dahlke, Wolfgang Dahmen, and Ronald A. DeVore -- Fully discrete multiscale Galerkin BEM / Tobias von Petersdorff and Christoph Schwab -- Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization / Andreas Rieder -- Towards object oriented software tools for numerical multiscale methods for PDEs using wavelets / Titus Barsch, Angela Kunoth, and Karsten Urban -- Scaling function and wavelet preconditioners for second order elliptic problems / Jeonghwan Ko, Andrew J. Kurdila, and Peter Oswald -- Local models and large scale statistics of the Kuramoto-Sivashinsky equation / Juan Elezgaray [and others] -- Theoretical dimension and the complexity of simulated turbulence / Mladen V. Wickerhauser, Marie Farge, and Eric Goirand -- Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients / Jean-Marc Angeletti, Sylvain Mazet, and Philippe Tchamitchian -- Some directional elliptic regularity for domains with cusps / Matthias Holschneider. Print version record. Differential equations, Partial Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037915 Wavelets (Mathematics) http://id.loc.gov/authorities/subjects/sh91006163 Équations aux dérivées partielles Solutions numériques. Ondelettes. MATHEMATICS Infinity. bisacsh Differential equations, Partial Numerical solutions fast Wavelets (Mathematics) fast Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Wavelet gnd Elliptisches Randwertproblem gnd http://d-nb.info/gnd/4193399-0 Wavelets. gtt Partiële differentiaalvergelijkingen. gtt Dahmen, Wolfgang, 1949- https://id.oclc.org/worldcat/entity/E39PBJvmPm76tMxdtrk8HjPJDq http://id.loc.gov/authorities/names/n89126157 Kurdila, Andrew. http://id.loc.gov/authorities/names/n97027399 Oswald, Peter, 1951- https://id.oclc.org/worldcat/entity/E39PCjHdjD3jCGBgv4t6GVX9Qq http://id.loc.gov/authorities/names/no95017708 has work: Multiscale wavelet methods for partial differential equations (Text) https://id.oclc.org/worldcat/entity/E39PCFM3jh8PQRP97dXp8r4xMq https://id.oclc.org/worldcat/ontology/hasWork Print version: Multiscale wavelet methods for partial differential equations. San Diego : Academic Press, ©1997 0122006755 9780122006753 (DLC) 97012672 (OCoLC)36621922 Wavelet analysis and its applications ; v. 6. http://id.loc.gov/authorities/names/n91122724 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=212291 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/1874608X/6 Volltext |
spellingShingle | Multiscale wavelet methods for partial differential equations / Wavelet analysis and its applications ; FEM-Like Multilevel Preconditioning: P. Oswald, Multilevel Solvers for Elliptic Problems on Domains. P. Vassilevski and J. Wang, Wavelet-Like Methods in the Design of Efficient Multilevel Preconditioners for Elliptic PDEs. Fast Wavelet Algorithms: Compression and Adaptivity: S. Bertoluzza, An Adaptive Collocation Method Based on Interpolating Wavelets. G. Beylkin and J. Keiser, An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PartialDifferential Equations. P. Joly, Y. Maday, and V. Perrier, A Dynamical Adaptive Concept Based on Wavelet Packet Best Bases: Application to Convection Diffusion Partial Differential Equations. S. Dahlke, W. Dahmen, and R. DeVore, Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations. Wavelet Solvers for Integral Equations: T. von Petersdorff and C. Schwab, Fully Discrete Multiscale Galerkin BEM. A. Rieder, Wavelet Multilevel Solvers for Linear Ill-Posed Problems Stabilized by Tikhonov Regularization. Software Tools and Numerical Experiments: T. Barsch, A. Kunoth, and K. Urban, Towards Object Oriented Software Tools for Numerical Multiscale Methods for PDEs Using Wavelets. J. Ko, A. Kurdila, and P. Oswald, Scaling Function and Wavelet Preconditioners for Second Order Elliptic Problems. Multiscale Interaction and Applications to Turbulence: J. Elezgaray, G. Berkooz, H. Dankowicz, P. Holmes, and M. Myers, Local Models and Large Scale Statistics of the Kuramoto-Sivashinsky Equation. M. Wickerhauser, M. Farge, and E. Goirand, Theoretical Dimension and the Complexity of Simulated Turbulence. Wavelet Analysis of Partial Differential Operators: J-M. Angeletti, S. Mazet, and P. Tchamitchian, Analysis of Second-Order Elliptic Operators Without Boundary Conditions and With VMO or Hilderian Coefficients. M. Holschneider, Some Directional Elliptic Regularity for Domains with Cusps. Subject Index. Multilevel solvers for elliptic problems on domains / Peter Oswald -- Wavelet-like methods in the design of efficient multilevel preconditioners for elliptic PDEs / Panayot S. Vassilevski and Junping Wang -- An adaptive collocation method based on interpolating wavelets / Silvia Bertoluzza -- An adaptive pseudo-wavelet approach for solving nonlinear partial differential equations / Gregory Beylkin and James M. Keiser -- A dynamical adaptive concept based on wavelet packet best bases : application to convection diffusion partial differential equations / Pascal Joly, Yvon Maday, and Valérie Perrier -- Nonlinear approximation and adaptive techniques for solving elliptic operator equations / Stephan Dahlke, Wolfgang Dahmen, and Ronald A. DeVore -- Fully discrete multiscale Galerkin BEM / Tobias von Petersdorff and Christoph Schwab -- Wavelet multilevel solvers for linear ill-posed problems stabilized by Tikhonov regularization / Andreas Rieder -- Towards object oriented software tools for numerical multiscale methods for PDEs using wavelets / Titus Barsch, Angela Kunoth, and Karsten Urban -- Scaling function and wavelet preconditioners for second order elliptic problems / Jeonghwan Ko, Andrew J. Kurdila, and Peter Oswald -- Local models and large scale statistics of the Kuramoto-Sivashinsky equation / Juan Elezgaray [and others] -- Theoretical dimension and the complexity of simulated turbulence / Mladen V. Wickerhauser, Marie Farge, and Eric Goirand -- Analysis of second order elliptic operators without boundary conditions and with VMO or Hölderian coefficients / Jean-Marc Angeletti, Sylvain Mazet, and Philippe Tchamitchian -- Some directional elliptic regularity for domains with cusps / Matthias Holschneider. Differential equations, Partial Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037915 Wavelets (Mathematics) http://id.loc.gov/authorities/subjects/sh91006163 Équations aux dérivées partielles Solutions numériques. Ondelettes. MATHEMATICS Infinity. bisacsh Differential equations, Partial Numerical solutions fast Wavelets (Mathematics) fast Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Wavelet gnd Elliptisches Randwertproblem gnd http://d-nb.info/gnd/4193399-0 Wavelets. gtt Partiële differentiaalvergelijkingen. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037915 http://id.loc.gov/authorities/subjects/sh91006163 http://d-nb.info/gnd/4128130-5 http://d-nb.info/gnd/4044779-0 http://d-nb.info/gnd/4193399-0 |
title | Multiscale wavelet methods for partial differential equations / |
title_auth | Multiscale wavelet methods for partial differential equations / |
title_exact_search | Multiscale wavelet methods for partial differential equations / |
title_full | Multiscale wavelet methods for partial differential equations / edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald. |
title_fullStr | Multiscale wavelet methods for partial differential equations / edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald. |
title_full_unstemmed | Multiscale wavelet methods for partial differential equations / edited by Wolfgang Dahmen, Andrew Kurdila, Peter Oswald. |
title_short | Multiscale wavelet methods for partial differential equations / |
title_sort | multiscale wavelet methods for partial differential equations |
topic | Differential equations, Partial Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037915 Wavelets (Mathematics) http://id.loc.gov/authorities/subjects/sh91006163 Équations aux dérivées partielles Solutions numériques. Ondelettes. MATHEMATICS Infinity. bisacsh Differential equations, Partial Numerical solutions fast Wavelets (Mathematics) fast Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Wavelet gnd Elliptisches Randwertproblem gnd http://d-nb.info/gnd/4193399-0 Wavelets. gtt Partiële differentiaalvergelijkingen. gtt |
topic_facet | Differential equations, Partial Numerical solutions. Wavelets (Mathematics) Équations aux dérivées partielles Solutions numériques. Ondelettes. MATHEMATICS Infinity. Differential equations, Partial Numerical solutions Numerisches Verfahren Partielle Differentialgleichung Wavelet Elliptisches Randwertproblem Wavelets. Partiële differentiaalvergelijkingen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=212291 https://www.sciencedirect.com/science/bookseries/1874608X/6 |
work_keys_str_mv | AT dahmenwolfgang multiscalewaveletmethodsforpartialdifferentialequations AT kurdilaandrew multiscalewaveletmethodsforpartialdifferentialequations AT oswaldpeter multiscalewaveletmethodsforpartialdifferentialequations |