Hilbert's tenth problem :: diophantine classes and extensions to global fields /
Hilbert's Tenth Problem - to find an algorithm to determine whether a polynomial equation in several variables with integer coefficients has integer solutions - was shown to be unsolvable in the late sixties. This book presents an account of results extending Hilbert's Tenth Problem to int...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2006.
|
Schriftenreihe: | New mathematical monographs ;
7. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Hilbert's Tenth Problem - to find an algorithm to determine whether a polynomial equation in several variables with integer coefficients has integer solutions - was shown to be unsolvable in the late sixties. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields. |
Beschreibung: | 1 online resource (xiii, 320 pages) |
Bibliographie: | Includes bibliographical references (pages 310-316) and index. |
ISBN: | 9780511257407 0511257406 0521833604 9780521833608 0511255810 9780511255816 0511256906 9780511256905 0511256388 9780511256387 051154295X 9780511542954 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn159933215 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 070730s2006 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d OSU |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d AU@ |d E7B |d MHW |d IDEBK |d REDDC |d DEBSZ |d OL$ |d MNU |d CAMBR |d OCLCQ |d EBLCP |d OCLCQ |d MERUC |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
016 | 7 | |a 013587843 |2 Uk | |
019 | |a 171125091 |a 171140102 |a 271789086 |a 437175098 |a 647626992 |a 668204250 |a 814470735 |a 819635153 |a 846261942 | ||
020 | |a 9780511257407 |q (electronic bk.) | ||
020 | |a 0511257406 |q (electronic bk.) | ||
020 | |a 0521833604 |q (hbk.) | ||
020 | |a 9780521833608 |q (hbk.) | ||
020 | |a 0511255810 |q (ebook ; |q ebrary) | ||
020 | |a 9780511255816 |q (ebook ; |q ebrary) | ||
020 | |a 0511256906 |q (electronic bk.) | ||
020 | |a 9780511256905 |q (electronic bk.) | ||
020 | |a 0511256388 | ||
020 | |a 9780511256387 | ||
020 | |a 051154295X |q (electronic book) | ||
020 | |a 9780511542954 |q (electronic book) | ||
035 | |a (OCoLC)159933215 |z (OCoLC)171125091 |z (OCoLC)171140102 |z (OCoLC)271789086 |z (OCoLC)437175098 |z (OCoLC)647626992 |z (OCoLC)668204250 |z (OCoLC)814470735 |z (OCoLC)819635153 |z (OCoLC)846261942 | ||
050 | 4 | |a QA242 |b .S53 2007eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.7 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Shlapentokh, Alexandra. |0 http://id.loc.gov/authorities/names/nb2006024712 | |
245 | 1 | 0 | |a Hilbert's tenth problem : |b diophantine classes and extensions to global fields / |c Alexandra Shlapentokh. |
246 | 3 | 0 | |a Diophantine classes and extensions to global fields |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2006. | ||
300 | |a 1 online resource (xiii, 320 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a New mathematical monographs ; |v 7 | |
504 | |a Includes bibliographical references (pages 310-316) and index. | ||
505 | 0 | |a Introduction -- Diophantine classes: definitions and basic facts -- Diophantine equivalence and Diophantine decidability -- Integrality at finitely many primes and divisibility of order at infinitely many primes -- Bound equations for number fields and their consequences -- Units of rings of W-integers of norm 1 -- Diophantine classes over number fields -- Diophantine undecidability of function fields -- Bounds for function fields -- Diophantine classes over function fields -- Mazur's conjectures and their consequences -- Results of Poonen -- Beyond global fields -- Recursion (computability) theory -- Number theory. | |
588 | 0 | |a Print version record. | |
520 | |a Hilbert's Tenth Problem - to find an algorithm to determine whether a polynomial equation in several variables with integer coefficients has integer solutions - was shown to be unsolvable in the late sixties. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields. | ||
650 | 0 | |a Hilbert's tenth problem. |0 http://id.loc.gov/authorities/subjects/sh93004733 | |
650 | 0 | |a Algebraic number theory. |0 http://id.loc.gov/authorities/subjects/sh85003436 | |
650 | 0 | |a Diophantine equations. |0 http://id.loc.gov/authorities/subjects/sh92001030 | |
650 | 6 | |a Dixième problème de Hilbert. | |
650 | 6 | |a Théorie algébrique des nombres. | |
650 | 6 | |a Équations diophantiennes. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Algebraic number theory |2 fast | |
650 | 7 | |a Diophantine equations |2 fast | |
650 | 7 | |a Hilbert's tenth problem |2 fast | |
758 | |i has work: |a Hilbert's tenth problem (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGbVgMJRCDTddvP7hm9CHy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Shlapentokh, Alexandra. |t Hilbert's tenth problem. |d Cambridge, UK ; New York : Cambridge University Press, 2006 |z 0521833604 |z 9780521833608 |w (DLC) 2007360684 |w (OCoLC)75713026 |
830 | 0 | |a New mathematical monographs ; |v 7. |0 http://id.loc.gov/authorities/names/n2003010567 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178878 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL279326 | ||
938 | |a ebrary |b EBRY |n ebr10151816 | ||
938 | |a EBSCOhost |b EBSC |n 178878 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 70972 | ||
938 | |a YBP Library Services |b YANK |n 3275872 | ||
938 | |a YBP Library Services |b YANK |n 2611539 | ||
938 | |a YBP Library Services |b YANK |n 2592601 | ||
938 | |a YBP Library Services |b YANK |n 2620049 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn159933215 |
---|---|
_version_ | 1816881649864933376 |
adam_text | |
any_adam_object | |
author | Shlapentokh, Alexandra |
author_GND | http://id.loc.gov/authorities/names/nb2006024712 |
author_facet | Shlapentokh, Alexandra |
author_role | |
author_sort | Shlapentokh, Alexandra |
author_variant | a s as |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA242 |
callnumber-raw | QA242 .S53 2007eb |
callnumber-search | QA242 .S53 2007eb |
callnumber-sort | QA 3242 S53 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- Diophantine classes: definitions and basic facts -- Diophantine equivalence and Diophantine decidability -- Integrality at finitely many primes and divisibility of order at infinitely many primes -- Bound equations for number fields and their consequences -- Units of rings of W-integers of norm 1 -- Diophantine classes over number fields -- Diophantine undecidability of function fields -- Bounds for function fields -- Diophantine classes over function fields -- Mazur's conjectures and their consequences -- Results of Poonen -- Beyond global fields -- Recursion (computability) theory -- Number theory. |
ctrlnum | (OCoLC)159933215 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04694cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn159933215</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">070730s2006 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">IDEBK</subfield><subfield code="d">REDDC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OL$</subfield><subfield code="d">MNU</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013587843</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">171125091</subfield><subfield code="a">171140102</subfield><subfield code="a">271789086</subfield><subfield code="a">437175098</subfield><subfield code="a">647626992</subfield><subfield code="a">668204250</subfield><subfield code="a">814470735</subfield><subfield code="a">819635153</subfield><subfield code="a">846261942</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511257407</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511257406</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521833604</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521833608</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511255810</subfield><subfield code="q">(ebook ;</subfield><subfield code="q">ebrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511255816</subfield><subfield code="q">(ebook ;</subfield><subfield code="q">ebrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511256906</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511256905</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511256388</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511256387</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051154295X</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542954</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)159933215</subfield><subfield code="z">(OCoLC)171125091</subfield><subfield code="z">(OCoLC)171140102</subfield><subfield code="z">(OCoLC)271789086</subfield><subfield code="z">(OCoLC)437175098</subfield><subfield code="z">(OCoLC)647626992</subfield><subfield code="z">(OCoLC)668204250</subfield><subfield code="z">(OCoLC)814470735</subfield><subfield code="z">(OCoLC)819635153</subfield><subfield code="z">(OCoLC)846261942</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA242</subfield><subfield code="b">.S53 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shlapentokh, Alexandra.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2006024712</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert's tenth problem :</subfield><subfield code="b">diophantine classes and extensions to global fields /</subfield><subfield code="c">Alexandra Shlapentokh.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Diophantine classes and extensions to global fields</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 320 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs ;</subfield><subfield code="v">7</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 310-316) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Diophantine classes: definitions and basic facts -- Diophantine equivalence and Diophantine decidability -- Integrality at finitely many primes and divisibility of order at infinitely many primes -- Bound equations for number fields and their consequences -- Units of rings of W-integers of norm 1 -- Diophantine classes over number fields -- Diophantine undecidability of function fields -- Bounds for function fields -- Diophantine classes over function fields -- Mazur's conjectures and their consequences -- Results of Poonen -- Beyond global fields -- Recursion (computability) theory -- Number theory.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Hilbert's Tenth Problem - to find an algorithm to determine whether a polynomial equation in several variables with integer coefficients has integer solutions - was shown to be unsolvable in the late sixties. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hilbert's tenth problem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93004733</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003436</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Diophantine equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92001030</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dixième problème de Hilbert.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie algébrique des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations diophantiennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diophantine equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert's tenth problem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hilbert's tenth problem (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGbVgMJRCDTddvP7hm9CHy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Shlapentokh, Alexandra.</subfield><subfield code="t">Hilbert's tenth problem.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2006</subfield><subfield code="z">0521833604</subfield><subfield code="z">9780521833608</subfield><subfield code="w">(DLC) 2007360684</subfield><subfield code="w">(OCoLC)75713026</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs ;</subfield><subfield code="v">7.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003010567</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178878</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL279326</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10151816</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">178878</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">70972</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3275872</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2611539</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2592601</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2620049</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn159933215 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:05Z |
institution | BVB |
isbn | 9780511257407 0511257406 0521833604 9780521833608 0511255810 9780511255816 0511256906 9780511256905 0511256388 9780511256387 051154295X 9780511542954 |
language | English |
oclc_num | 159933215 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 320 pages) |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press, |
record_format | marc |
series | New mathematical monographs ; |
series2 | New mathematical monographs ; |
spelling | Shlapentokh, Alexandra. http://id.loc.gov/authorities/names/nb2006024712 Hilbert's tenth problem : diophantine classes and extensions to global fields / Alexandra Shlapentokh. Diophantine classes and extensions to global fields Cambridge, UK ; New York : Cambridge University Press, 2006. 1 online resource (xiii, 320 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier New mathematical monographs ; 7 Includes bibliographical references (pages 310-316) and index. Introduction -- Diophantine classes: definitions and basic facts -- Diophantine equivalence and Diophantine decidability -- Integrality at finitely many primes and divisibility of order at infinitely many primes -- Bound equations for number fields and their consequences -- Units of rings of W-integers of norm 1 -- Diophantine classes over number fields -- Diophantine undecidability of function fields -- Bounds for function fields -- Diophantine classes over function fields -- Mazur's conjectures and their consequences -- Results of Poonen -- Beyond global fields -- Recursion (computability) theory -- Number theory. Print version record. Hilbert's Tenth Problem - to find an algorithm to determine whether a polynomial equation in several variables with integer coefficients has integer solutions - was shown to be unsolvable in the late sixties. This book presents an account of results extending Hilbert's Tenth Problem to integrally closed subrings of global fields. Hilbert's tenth problem. http://id.loc.gov/authorities/subjects/sh93004733 Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Dixième problème de Hilbert. Théorie algébrique des nombres. Équations diophantiennes. MATHEMATICS Number Theory. bisacsh Algebraic number theory fast Diophantine equations fast Hilbert's tenth problem fast has work: Hilbert's tenth problem (Text) https://id.oclc.org/worldcat/entity/E39PCGbVgMJRCDTddvP7hm9CHy https://id.oclc.org/worldcat/ontology/hasWork Print version: Shlapentokh, Alexandra. Hilbert's tenth problem. Cambridge, UK ; New York : Cambridge University Press, 2006 0521833604 9780521833608 (DLC) 2007360684 (OCoLC)75713026 New mathematical monographs ; 7. http://id.loc.gov/authorities/names/n2003010567 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178878 Volltext |
spellingShingle | Shlapentokh, Alexandra Hilbert's tenth problem : diophantine classes and extensions to global fields / New mathematical monographs ; Introduction -- Diophantine classes: definitions and basic facts -- Diophantine equivalence and Diophantine decidability -- Integrality at finitely many primes and divisibility of order at infinitely many primes -- Bound equations for number fields and their consequences -- Units of rings of W-integers of norm 1 -- Diophantine classes over number fields -- Diophantine undecidability of function fields -- Bounds for function fields -- Diophantine classes over function fields -- Mazur's conjectures and their consequences -- Results of Poonen -- Beyond global fields -- Recursion (computability) theory -- Number theory. Hilbert's tenth problem. http://id.loc.gov/authorities/subjects/sh93004733 Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Dixième problème de Hilbert. Théorie algébrique des nombres. Équations diophantiennes. MATHEMATICS Number Theory. bisacsh Algebraic number theory fast Diophantine equations fast Hilbert's tenth problem fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh93004733 http://id.loc.gov/authorities/subjects/sh85003436 http://id.loc.gov/authorities/subjects/sh92001030 |
title | Hilbert's tenth problem : diophantine classes and extensions to global fields / |
title_alt | Diophantine classes and extensions to global fields |
title_auth | Hilbert's tenth problem : diophantine classes and extensions to global fields / |
title_exact_search | Hilbert's tenth problem : diophantine classes and extensions to global fields / |
title_full | Hilbert's tenth problem : diophantine classes and extensions to global fields / Alexandra Shlapentokh. |
title_fullStr | Hilbert's tenth problem : diophantine classes and extensions to global fields / Alexandra Shlapentokh. |
title_full_unstemmed | Hilbert's tenth problem : diophantine classes and extensions to global fields / Alexandra Shlapentokh. |
title_short | Hilbert's tenth problem : |
title_sort | hilbert s tenth problem diophantine classes and extensions to global fields |
title_sub | diophantine classes and extensions to global fields / |
topic | Hilbert's tenth problem. http://id.loc.gov/authorities/subjects/sh93004733 Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Dixième problème de Hilbert. Théorie algébrique des nombres. Équations diophantiennes. MATHEMATICS Number Theory. bisacsh Algebraic number theory fast Diophantine equations fast Hilbert's tenth problem fast |
topic_facet | Hilbert's tenth problem. Algebraic number theory. Diophantine equations. Dixième problème de Hilbert. Théorie algébrique des nombres. Équations diophantiennes. MATHEMATICS Number Theory. Algebraic number theory Diophantine equations Hilbert's tenth problem |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178878 |
work_keys_str_mv | AT shlapentokhalexandra hilbertstenthproblemdiophantineclassesandextensionstoglobalfields AT shlapentokhalexandra diophantineclassesandextensionstoglobalfields |