Topological solitons /:
This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dim...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2004.
|
Schriftenreihe: | Cambridge monographs on mathematical physics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions. |
Beschreibung: | 1 online resource (xi, 493 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 467-490) and index. |
ISBN: | 0511211414 9780511211416 0521838363 9780521838368 0511216785 9780511216787 0511213182 9780511213182 0511214995 9780511214998 9780511617034 0511617038 9786610540990 6610540993 1107150612 9781107150614 1280540990 9781280540998 0511331509 9780511331503 9780521040969 0521040965 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn144618426 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 031205s2004 enka ob 001 0 eng d | ||
010 | |z 2003069072 | ||
040 | |a COCUF |b eng |e pn |c COCUF |d YDXCP |d OCLCG |d OCLCQ |d N$T |d CUD |d AU@ |d OCLCQ |d DKDLA |d MERUC |d CCO |d E7B |d MHW |d IDEBK |d OCLCQ |d DEBSZ |d NLGGC |d OCLCQ |d OCLCO |d OCLCQ |d OL$ |d MNU |d CAMBR |d OCLCQ |d OCLCF |d EBLCP |d OCLCQ |d AZK |d LOA |d COCUF |d MOR |d PIFBR |d ZCU |d OCLCQ |d U3W |d COO |d STF |d WRM |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d A6Q |d G3B |d OCLCQ |d UKCRE |d AGLDB |d VLY |d AJS |d LUN |d OCLCQ |d OCLCO |d QGK |d DGN |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d INARC |d OCLCL | ||
019 | |a 74174732 |a 144219308 |a 171139050 |a 266956479 |a 481786616 |a 481859316 |a 560235276 |a 647519413 |a 668199979 |a 847376979 |a 888519359 |a 961567484 |a 962602462 |a 966094105 |a 988437675 |a 992049083 |a 1035704377 |a 1037744230 |a 1038605150 |a 1045517321 |a 1055407195 |a 1058090398 |a 1066497232 |a 1153478397 |a 1162230310 |a 1167584980 |a 1228593556 |a 1241890767 |a 1259189537 |a 1412566550 | ||
020 | |a 0511211414 | ||
020 | |a 9780511211416 | ||
020 | |a 0521838363 | ||
020 | |a 9780521838368 | ||
020 | |a 0511216785 |q (electronic bk.) | ||
020 | |a 9780511216787 |q (electronic bk.) | ||
020 | |a 0511213182 | ||
020 | |a 9780511213182 | ||
020 | |a 0511214995 |q (electronic bk.) | ||
020 | |a 9780511214998 |q (electronic bk.) | ||
020 | |a 9780511617034 |q (electronic book) | ||
020 | |a 0511617038 |q (electronic book) | ||
020 | |a 9786610540990 | ||
020 | |a 6610540993 | ||
020 | |a 1107150612 | ||
020 | |a 9781107150614 | ||
020 | |a 1280540990 | ||
020 | |a 9781280540998 | ||
020 | |a 0511331509 | ||
020 | |a 9780511331503 | ||
020 | |a 9780521040969 |q (paperback) | ||
020 | |a 0521040965 | ||
024 | 8 | |a 99954193323 | |
035 | |a (OCoLC)144618426 |z (OCoLC)74174732 |z (OCoLC)144219308 |z (OCoLC)171139050 |z (OCoLC)266956479 |z (OCoLC)481786616 |z (OCoLC)481859316 |z (OCoLC)560235276 |z (OCoLC)647519413 |z (OCoLC)668199979 |z (OCoLC)847376979 |z (OCoLC)888519359 |z (OCoLC)961567484 |z (OCoLC)962602462 |z (OCoLC)966094105 |z (OCoLC)988437675 |z (OCoLC)992049083 |z (OCoLC)1035704377 |z (OCoLC)1037744230 |z (OCoLC)1038605150 |z (OCoLC)1045517321 |z (OCoLC)1055407195 |z (OCoLC)1058090398 |z (OCoLC)1066497232 |z (OCoLC)1153478397 |z (OCoLC)1162230310 |z (OCoLC)1167584980 |z (OCoLC)1228593556 |z (OCoLC)1241890767 |z (OCoLC)1259189537 |z (OCoLC)1412566550 | ||
050 | 4 | |a QC174.26.W28 |b M36 2004eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 530.14 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Manton, Nicholas, |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PBJv4q3RQTqPHQ7MyRBhyh3 |0 http://id.loc.gov/authorities/names/n2003019585 | |
245 | 1 | 0 | |a Topological solitons / |c Nicholas Manton, Paul Sutcliffe. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2004. | ||
300 | |a 1 online resource (xi, 493 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Cambridge monographs on mathematical physics | |
504 | |a Includes bibliographical references (pages 467-490) and index. | ||
505 | 0 | |a Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons -- experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether's theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory. | |
520 | |a This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Solitons. |0 http://id.loc.gov/authorities/subjects/sh85124672 | |
650 | 0 | |a Wave-motion, Theory of. |0 http://id.loc.gov/authorities/subjects/sh85145785 | |
650 | 6 | |a Solitons. | |
650 | 6 | |a Théorie du mouvement ondulatoire. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Solitons |2 fast | |
650 | 7 | |a Wave-motion, Theory of |2 fast | |
650 | 1 | 7 | |a Solitons. |2 gtt |
700 | 1 | |a Sutcliffe, Paul |q (Paul M.) |0 http://id.loc.gov/authorities/names/n2003019566 | |
758 | |i has work: |a Topological solitons (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFRPmfGyqdjCVg7vPkcWMq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
773 | 0 | |t EBL | |
776 | 0 | 8 | |i Print version: |a Manton, Nicholas, 1952- |t Topological solitons. |d Cambridge ; New York : Cambridge University Press, 2004 |w (DLC) 2003069072 |
830 | 0 | |a Cambridge monographs on mathematical physics. |0 http://id.loc.gov/authorities/names/n42005691 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=164327 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13427142 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL266652 | ||
938 | |a ebrary |b EBRY |n ebr10131629 | ||
938 | |a EBSCOhost |b EBSC |n 164327 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 54099 | ||
938 | |a YBP Library Services |b YANK |n 2619588 | ||
938 | |a YBP Library Services |b YANK |n 3279180 | ||
938 | |a YBP Library Services |b YANK |n 2483185 | ||
938 | |a YBP Library Services |b YANK |n 2592152 | ||
938 | |a Internet Archive |b INAR |n topologicalsolit0000mant | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn144618426 |
---|---|
_version_ | 1816881649009295360 |
adam_text | |
any_adam_object | |
author | Manton, Nicholas, 1952- |
author2 | Sutcliffe, Paul (Paul M.) |
author2_role | |
author2_variant | p s ps |
author_GND | http://id.loc.gov/authorities/names/n2003019585 http://id.loc.gov/authorities/names/n2003019566 |
author_facet | Manton, Nicholas, 1952- Sutcliffe, Paul (Paul M.) |
author_role | |
author_sort | Manton, Nicholas, 1952- |
author_variant | n m nm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.26.W28 M36 2004eb |
callnumber-search | QC174.26.W28 M36 2004eb |
callnumber-sort | QC 3174.26 W28 M36 42004EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons -- experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether's theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory. |
ctrlnum | (OCoLC)144618426 |
dewey-full | 530.14 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14 |
dewey-search | 530.14 |
dewey-sort | 3530.14 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05841cam a2200937Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn144618426</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">031205s2004 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2003069072</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">COCUF</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">COCUF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">CUD</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">MNU</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">COO</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AGLDB</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">DGN</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">74174732</subfield><subfield code="a">144219308</subfield><subfield code="a">171139050</subfield><subfield code="a">266956479</subfield><subfield code="a">481786616</subfield><subfield code="a">481859316</subfield><subfield code="a">560235276</subfield><subfield code="a">647519413</subfield><subfield code="a">668199979</subfield><subfield code="a">847376979</subfield><subfield code="a">888519359</subfield><subfield code="a">961567484</subfield><subfield code="a">962602462</subfield><subfield code="a">966094105</subfield><subfield code="a">988437675</subfield><subfield code="a">992049083</subfield><subfield code="a">1035704377</subfield><subfield code="a">1037744230</subfield><subfield code="a">1038605150</subfield><subfield code="a">1045517321</subfield><subfield code="a">1055407195</subfield><subfield code="a">1058090398</subfield><subfield code="a">1066497232</subfield><subfield code="a">1153478397</subfield><subfield code="a">1162230310</subfield><subfield code="a">1167584980</subfield><subfield code="a">1228593556</subfield><subfield code="a">1241890767</subfield><subfield code="a">1259189537</subfield><subfield code="a">1412566550</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511211414</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511211416</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521838363</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521838368</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511216785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511216787</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511213182</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511213182</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511214995</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511214998</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511617034</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511617038</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786610540990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6610540993</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107150612</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107150614</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280540990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280540998</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511331509</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511331503</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521040969</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521040965</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">99954193323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)144618426</subfield><subfield code="z">(OCoLC)74174732</subfield><subfield code="z">(OCoLC)144219308</subfield><subfield code="z">(OCoLC)171139050</subfield><subfield code="z">(OCoLC)266956479</subfield><subfield code="z">(OCoLC)481786616</subfield><subfield code="z">(OCoLC)481859316</subfield><subfield code="z">(OCoLC)560235276</subfield><subfield code="z">(OCoLC)647519413</subfield><subfield code="z">(OCoLC)668199979</subfield><subfield code="z">(OCoLC)847376979</subfield><subfield code="z">(OCoLC)888519359</subfield><subfield code="z">(OCoLC)961567484</subfield><subfield code="z">(OCoLC)962602462</subfield><subfield code="z">(OCoLC)966094105</subfield><subfield code="z">(OCoLC)988437675</subfield><subfield code="z">(OCoLC)992049083</subfield><subfield code="z">(OCoLC)1035704377</subfield><subfield code="z">(OCoLC)1037744230</subfield><subfield code="z">(OCoLC)1038605150</subfield><subfield code="z">(OCoLC)1045517321</subfield><subfield code="z">(OCoLC)1055407195</subfield><subfield code="z">(OCoLC)1058090398</subfield><subfield code="z">(OCoLC)1066497232</subfield><subfield code="z">(OCoLC)1153478397</subfield><subfield code="z">(OCoLC)1162230310</subfield><subfield code="z">(OCoLC)1167584980</subfield><subfield code="z">(OCoLC)1228593556</subfield><subfield code="z">(OCoLC)1241890767</subfield><subfield code="z">(OCoLC)1259189537</subfield><subfield code="z">(OCoLC)1412566550</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.26.W28</subfield><subfield code="b">M36 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.14</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Manton, Nicholas,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJv4q3RQTqPHQ7MyRBhyh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003019585</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological solitons /</subfield><subfield code="c">Nicholas Manton, Paul Sutcliffe.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 493 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge monographs on mathematical physics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 467-490) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons -- experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether's theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solitons.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124672</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Wave-motion, Theory of.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85145785</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Solitons.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie du mouvement ondulatoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wave-motion, Theory of</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Solitons.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sutcliffe, Paul</subfield><subfield code="q">(Paul M.)</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003019566</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Topological solitons (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFRPmfGyqdjCVg7vPkcWMq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="773" ind1="0" ind2=" "><subfield code="t">EBL</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Manton, Nicholas, 1952-</subfield><subfield code="t">Topological solitons.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2004</subfield><subfield code="w">(DLC) 2003069072</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge monographs on mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005691</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=164327</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13427142</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL266652</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10131629</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">164327</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">54099</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2619588</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3279180</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2483185</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2592152</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">topologicalsolit0000mant</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn144618426 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:04Z |
institution | BVB |
isbn | 0511211414 9780511211416 0521838363 9780521838368 0511216785 9780511216787 0511213182 9780511213182 0511214995 9780511214998 9780511617034 0511617038 9786610540990 6610540993 1107150612 9781107150614 1280540990 9781280540998 0511331509 9780511331503 9780521040969 0521040965 |
language | English |
oclc_num | 144618426 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 493 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge monographs on mathematical physics. |
series2 | Cambridge monographs on mathematical physics |
spelling | Manton, Nicholas, 1952- https://id.oclc.org/worldcat/entity/E39PBJv4q3RQTqPHQ7MyRBhyh3 http://id.loc.gov/authorities/names/n2003019585 Topological solitons / Nicholas Manton, Paul Sutcliffe. Cambridge ; New York : Cambridge University Press, 2004. 1 online resource (xi, 493 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Cambridge monographs on mathematical physics Includes bibliographical references (pages 467-490) and index. Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons -- experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether's theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory. This book introduces the main examples of topological solitons in classical field theories, discusses the forces between solitons, and surveys both static and dynamic multi-soliton solutions. It covers kinks in one dimension, lumps and vortices in two dimensions, monopoles and Skyrmions in three dimensions, and instantons in four dimensions. Print version record. English. Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Wave-motion, Theory of. http://id.loc.gov/authorities/subjects/sh85145785 Solitons. Théorie du mouvement ondulatoire. SCIENCE Waves & Wave Mechanics. bisacsh Solitons fast Wave-motion, Theory of fast Solitons. gtt Sutcliffe, Paul (Paul M.) http://id.loc.gov/authorities/names/n2003019566 has work: Topological solitons (Text) https://id.oclc.org/worldcat/entity/E39PCFRPmfGyqdjCVg7vPkcWMq https://id.oclc.org/worldcat/ontology/hasWork EBL Print version: Manton, Nicholas, 1952- Topological solitons. Cambridge ; New York : Cambridge University Press, 2004 (DLC) 2003069072 Cambridge monographs on mathematical physics. http://id.loc.gov/authorities/names/n42005691 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=164327 Volltext |
spellingShingle | Manton, Nicholas, 1952- Topological solitons / Cambridge monographs on mathematical physics. Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 1.1 Solitons as particles; 1.2 A brief history of topological solitons; 1.3 Bogomolny equations and moduli spaces; 1.4 Soliton dynamics; 1.5 Solitons and integrable systems; 1.6 Solitons -- experimental status; 1.7 Outline of this book; 2 Lagrangians and fields; 2.1 Finite-dimensional systems; 2.2 Symmetries and conservation laws; 2.3 Field theory; 2.4 Noether's theorem in field theory; 2.5 Vacua and spontaneous symmetry breaking; 2.6 Gauge theory; 2.7 The Higgs mechanism; 2.8 Gradient flow in field theory. Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Wave-motion, Theory of. http://id.loc.gov/authorities/subjects/sh85145785 Solitons. Théorie du mouvement ondulatoire. SCIENCE Waves & Wave Mechanics. bisacsh Solitons fast Wave-motion, Theory of fast Solitons. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85124672 http://id.loc.gov/authorities/subjects/sh85145785 |
title | Topological solitons / |
title_auth | Topological solitons / |
title_exact_search | Topological solitons / |
title_full | Topological solitons / Nicholas Manton, Paul Sutcliffe. |
title_fullStr | Topological solitons / Nicholas Manton, Paul Sutcliffe. |
title_full_unstemmed | Topological solitons / Nicholas Manton, Paul Sutcliffe. |
title_short | Topological solitons / |
title_sort | topological solitons |
topic | Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Wave-motion, Theory of. http://id.loc.gov/authorities/subjects/sh85145785 Solitons. Théorie du mouvement ondulatoire. SCIENCE Waves & Wave Mechanics. bisacsh Solitons fast Wave-motion, Theory of fast Solitons. gtt |
topic_facet | Solitons. Wave-motion, Theory of. Théorie du mouvement ondulatoire. SCIENCE Waves & Wave Mechanics. Solitons Wave-motion, Theory of |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=164327 |
work_keys_str_mv | AT mantonnicholas topologicalsolitons AT sutcliffepaul topologicalsolitons |