Projective differential geometry old and new :: from the Schwarzian derivative to the cohomology of diffeomorphism groups /
Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and p...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2005.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
165. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject. |
Beschreibung: | 1 online resource (xi, 249 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 236-246) and index. |
ISBN: | 9780511265785 0511265786 0521831865 9780521831864 0511263503 9780511263507 0511265069 9780511265068 9780511543142 051154314X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm82365929 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 070208s2005 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d OSU |d AU@ |d E7B |d OKU |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d OCLCO |d COO |d OCLCQ |d UAB |d OCLCQ |d UIU |d K6U |d OCLCQ |d OCLCO |d DGN |d UKAHL |d INARC |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 144226642 |a 171125349 |a 213370176 |a 271789258 |a 552965307 |a 648129043 |a 1285740703 | ||
020 | |a 9780511265785 |q (electronic bk.) | ||
020 | |a 0511265786 |q (electronic bk.) | ||
020 | |a 0521831865 |q (hardback) | ||
020 | |a 9780521831864 |q (hardback) | ||
020 | |a 0511263503 |q (ebook) | ||
020 | |a 9780511263507 |q (ebook) | ||
020 | |a 0511265069 |q (electronic bk.) | ||
020 | |a 9780511265068 |q (electronic bk.) | ||
020 | |a 9780511543142 | ||
020 | |a 051154314X | ||
035 | |a (OCoLC)82365929 |z (OCoLC)144226642 |z (OCoLC)171125349 |z (OCoLC)213370176 |z (OCoLC)271789258 |z (OCoLC)552965307 |z (OCoLC)648129043 |z (OCoLC)1285740703 | ||
050 | 4 | |a QA660 |b .O87 2005eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.3/6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ovsienko, Valentin. |0 http://id.loc.gov/authorities/names/n2003003680 | |
245 | 1 | 0 | |a Projective differential geometry old and new : |b from the Schwarzian derivative to the cohomology of diffeomorphism groups / |c V. Ovsienko, S. Tabachnikov. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2005. | ||
300 | |a 1 online resource (xi, 249 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 165 | |
504 | |a Includes bibliographical references (pages 236-246) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |g 1. |t Introduction -- |g 2. |t The Geometry of the projective line -- |g 3. |t The Algebra of the projective line and cohomology of Diff(S1) -- |g 4. |t Vertices of projective curves -- |g 5. |t Projective invariants of submanifolds -- |g 6. |t Projective structures on smooth manifolds -- |g 7. |t Multi-dimensional Schwarzian derivatives and differential operators -- |g Appendix 1. |t Five proofs of the Sturm theorem |g Appendix 2. |t The Language of symplectic and contact geometry -- |g Appendix 3. |t The Language of connections -- |g Appendix 4. |t The Language of homological algebra -- |g Appendix 5. |t Remarkable cocycles on groups of diffeomorphisms -- |g Appendix 6. |t The Godbillon-Vey class -- |g Appendix 7. |t The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry. |
520 | |a Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject. | ||
650 | 0 | |a Projective differential geometry. |0 http://id.loc.gov/authorities/subjects/sh85054147 | |
650 | 6 | |a Géométrie différentielle projective. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Projective differential geometry |2 fast | |
700 | 1 | |a Tabachnikov, Serge. |0 http://id.loc.gov/authorities/names/no96016527 | |
758 | |i has work: |a Projective differential geometry old and new (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFrVMP4d9JBHWqXBdwFmMP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ovsienko, Valentin. |t Projective differential geometry old and new. |d Cambridge, UK ; New York : Cambridge University Press, 2005 |z 0521831865 |z 9780521831864 |w (DLC) 2004045919 |w (OCoLC)54953058 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 165. |0 http://id.loc.gov/authorities/names/n42005726 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=181813 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13422892 | ||
938 | |a ebrary |b EBRY |n ebr10158220 | ||
938 | |a EBSCOhost |b EBSC |n 181813 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 74982 | ||
938 | |a Internet Archive |b INAR |n projectivediffer0000ovsi | ||
938 | |a YBP Library Services |b YANK |n 2592718 | ||
938 | |a YBP Library Services |b YANK |n 3275891 | ||
938 | |a YBP Library Services |b YANK |n 2520642 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm82365929 |
---|---|
_version_ | 1816881645072941056 |
adam_text | |
any_adam_object | |
author | Ovsienko, Valentin |
author2 | Tabachnikov, Serge |
author2_role | |
author2_variant | s t st |
author_GND | http://id.loc.gov/authorities/names/n2003003680 http://id.loc.gov/authorities/names/no96016527 |
author_facet | Ovsienko, Valentin Tabachnikov, Serge |
author_role | |
author_sort | Ovsienko, Valentin |
author_variant | v o vo |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA660 |
callnumber-raw | QA660 .O87 2005eb |
callnumber-search | QA660 .O87 2005eb |
callnumber-sort | QA 3660 O87 42005EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- The Geometry of the projective line -- The Algebra of the projective line and cohomology of Diff(S1) -- Vertices of projective curves -- Projective invariants of submanifolds -- Projective structures on smooth manifolds -- Multi-dimensional Schwarzian derivatives and differential operators -- Five proofs of the Sturm theorem The Language of symplectic and contact geometry -- The Language of connections -- The Language of homological algebra -- Remarkable cocycles on groups of diffeomorphisms -- The Godbillon-Vey class -- The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry. |
ctrlnum | (OCoLC)82365929 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05197cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm82365929 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">070208s2005 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">OKU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DGN</subfield><subfield code="d">UKAHL</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">144226642</subfield><subfield code="a">171125349</subfield><subfield code="a">213370176</subfield><subfield code="a">271789258</subfield><subfield code="a">552965307</subfield><subfield code="a">648129043</subfield><subfield code="a">1285740703</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511265785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511265786</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521831865</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521831864</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511263503</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511263507</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511265069</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511265068</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543142</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051154314X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)82365929</subfield><subfield code="z">(OCoLC)144226642</subfield><subfield code="z">(OCoLC)171125349</subfield><subfield code="z">(OCoLC)213370176</subfield><subfield code="z">(OCoLC)271789258</subfield><subfield code="z">(OCoLC)552965307</subfield><subfield code="z">(OCoLC)648129043</subfield><subfield code="z">(OCoLC)1285740703</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA660</subfield><subfield code="b">.O87 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ovsienko, Valentin.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003003680</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Projective differential geometry old and new :</subfield><subfield code="b">from the Schwarzian derivative to the cohomology of diffeomorphism groups /</subfield><subfield code="c">V. Ovsienko, S. Tabachnikov.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 249 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">165</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 236-246) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">The Geometry of the projective line --</subfield><subfield code="g">3.</subfield><subfield code="t">The Algebra of the projective line and cohomology of Diff(S1) --</subfield><subfield code="g">4.</subfield><subfield code="t">Vertices of projective curves --</subfield><subfield code="g">5.</subfield><subfield code="t">Projective invariants of submanifolds --</subfield><subfield code="g">6.</subfield><subfield code="t">Projective structures on smooth manifolds --</subfield><subfield code="g">7.</subfield><subfield code="t">Multi-dimensional Schwarzian derivatives and differential operators --</subfield><subfield code="g">Appendix 1.</subfield><subfield code="t">Five proofs of the Sturm theorem</subfield><subfield code="g">Appendix 2.</subfield><subfield code="t">The Language of symplectic and contact geometry --</subfield><subfield code="g">Appendix 3.</subfield><subfield code="t">The Language of connections --</subfield><subfield code="g">Appendix 4.</subfield><subfield code="t">The Language of homological algebra --</subfield><subfield code="g">Appendix 5.</subfield><subfield code="t">Remarkable cocycles on groups of diffeomorphisms --</subfield><subfield code="g">Appendix 6.</subfield><subfield code="t">The Godbillon-Vey class --</subfield><subfield code="g">Appendix 7.</subfield><subfield code="t">The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Projective differential geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054147</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle projective.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Projective differential geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tabachnikov, Serge.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no96016527</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Projective differential geometry old and new (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFrVMP4d9JBHWqXBdwFmMP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ovsienko, Valentin.</subfield><subfield code="t">Projective differential geometry old and new.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2005</subfield><subfield code="z">0521831865</subfield><subfield code="z">9780521831864</subfield><subfield code="w">(DLC) 2004045919</subfield><subfield code="w">(OCoLC)54953058</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">165.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=181813</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13422892</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10158220</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">181813</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">74982</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">projectivediffer0000ovsi</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2592718</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3275891</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2520642</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm82365929 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:00Z |
institution | BVB |
isbn | 9780511265785 0511265786 0521831865 9780521831864 0511263503 9780511263507 0511265069 9780511265068 9780511543142 051154314X |
language | English |
oclc_num | 82365929 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 249 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Ovsienko, Valentin. http://id.loc.gov/authorities/names/n2003003680 Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / V. Ovsienko, S. Tabachnikov. Cambridge, UK ; New York : Cambridge University Press, 2005. 1 online resource (xi, 249 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 165 Includes bibliographical references (pages 236-246) and index. Print version record. 1. Introduction -- 2. The Geometry of the projective line -- 3. The Algebra of the projective line and cohomology of Diff(S1) -- 4. Vertices of projective curves -- 5. Projective invariants of submanifolds -- 6. Projective structures on smooth manifolds -- 7. Multi-dimensional Schwarzian derivatives and differential operators -- Appendix 1. Five proofs of the Sturm theorem Appendix 2. The Language of symplectic and contact geometry -- Appendix 3. The Language of connections -- Appendix 4. The Language of homological algebra -- Appendix 5. Remarkable cocycles on groups of diffeomorphisms -- Appendix 6. The Godbillon-Vey class -- Appendix 7. The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry. Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject. Projective differential geometry. http://id.loc.gov/authorities/subjects/sh85054147 Géométrie différentielle projective. MATHEMATICS Geometry Differential. bisacsh Projective differential geometry fast Tabachnikov, Serge. http://id.loc.gov/authorities/names/no96016527 has work: Projective differential geometry old and new (Text) https://id.oclc.org/worldcat/entity/E39PCFrVMP4d9JBHWqXBdwFmMP https://id.oclc.org/worldcat/ontology/hasWork Print version: Ovsienko, Valentin. Projective differential geometry old and new. Cambridge, UK ; New York : Cambridge University Press, 2005 0521831865 9780521831864 (DLC) 2004045919 (OCoLC)54953058 Cambridge tracts in mathematics ; 165. http://id.loc.gov/authorities/names/n42005726 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=181813 Volltext |
spellingShingle | Ovsienko, Valentin Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / Cambridge tracts in mathematics ; Introduction -- The Geometry of the projective line -- The Algebra of the projective line and cohomology of Diff(S1) -- Vertices of projective curves -- Projective invariants of submanifolds -- Projective structures on smooth manifolds -- Multi-dimensional Schwarzian derivatives and differential operators -- Five proofs of the Sturm theorem The Language of symplectic and contact geometry -- The Language of connections -- The Language of homological algebra -- Remarkable cocycles on groups of diffeomorphisms -- The Godbillon-Vey class -- The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry. Projective differential geometry. http://id.loc.gov/authorities/subjects/sh85054147 Géométrie différentielle projective. MATHEMATICS Geometry Differential. bisacsh Projective differential geometry fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054147 |
title | Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / |
title_alt | Introduction -- The Geometry of the projective line -- The Algebra of the projective line and cohomology of Diff(S1) -- Vertices of projective curves -- Projective invariants of submanifolds -- Projective structures on smooth manifolds -- Multi-dimensional Schwarzian derivatives and differential operators -- Five proofs of the Sturm theorem The Language of symplectic and contact geometry -- The Language of connections -- The Language of homological algebra -- Remarkable cocycles on groups of diffeomorphisms -- The Godbillon-Vey class -- The Adler-Gelfand-Dickey bracket and infinite-dimensional Poisson geometry. |
title_auth | Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / |
title_exact_search | Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / |
title_full | Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / V. Ovsienko, S. Tabachnikov. |
title_fullStr | Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / V. Ovsienko, S. Tabachnikov. |
title_full_unstemmed | Projective differential geometry old and new : from the Schwarzian derivative to the cohomology of diffeomorphism groups / V. Ovsienko, S. Tabachnikov. |
title_short | Projective differential geometry old and new : |
title_sort | projective differential geometry old and new from the schwarzian derivative to the cohomology of diffeomorphism groups |
title_sub | from the Schwarzian derivative to the cohomology of diffeomorphism groups / |
topic | Projective differential geometry. http://id.loc.gov/authorities/subjects/sh85054147 Géométrie différentielle projective. MATHEMATICS Geometry Differential. bisacsh Projective differential geometry fast |
topic_facet | Projective differential geometry. Géométrie différentielle projective. MATHEMATICS Geometry Differential. Projective differential geometry |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=181813 |
work_keys_str_mv | AT ovsienkovalentin projectivedifferentialgeometryoldandnewfromtheschwarzianderivativetothecohomologyofdiffeomorphismgroups AT tabachnikovserge projectivedifferentialgeometryoldandnewfromtheschwarzianderivativetothecohomologyofdiffeomorphismgroups |