Semi-supervised learning /:
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research.
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©2006.
|
Schriftenreihe: | Adaptive computation and machine learning.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. |
Beschreibung: | 1 online resource (x, 508 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 479-497). |
ISBN: | 9780262255899 0262255898 0262033585 9780262033589 1282096184 9781282096189 1429414081 9781429414081 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm76824411 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 061129s2006 maua ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d TEX |d OCLCQ |d N$T |d IDEBK |d OCLCQ |d IEEEE |d OCLCF |d OTZ |d NLGGC |d OCLCQ |d COCUF |d E7B |d DKDLA |d OCLCQ |d EBLCP |d OCLCQ |d AZK |d LOA |d STBDS |d JBG |d DEBSZ |d AGLDB |d OCLCQ |d MOR |d PIFAG |d PIFBR |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d NJR |d WY@ |d U3W |d OCLCQ |d LUE |d BRL |d STF |d WRM |d OCLCQ |d VTS |d MERER |d OCLCQ |d ICG |d VT2 |d AU@ |d OCLCQ |d WYU |d MITPR |d A6Q |d LEAUB |d DKC |d OCLCQ |d OL$ |d OCLCQ |d K6U |d SFB |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 144221750 |a 182530233 |a 473855448 |a 482338380 |a 648224249 |a 698448592 |a 815786484 |a 888487196 |a 961552592 |a 962681986 |a 966247738 |a 988479849 |a 991907509 |a 992079045 |a 1011926238 |a 1037506878 |a 1037915633 |a 1038619749 |a 1055357085 |a 1062909239 |a 1081229069 |a 1083554933 |a 1102553906 |a 1125509500 |a 1130046352 | ||
020 | |a 9780262255899 |q (electronic bk.) | ||
020 | |a 0262255898 |q (electronic bk.) | ||
020 | |a 0262033585 |q (alk. paper) | ||
020 | |a 9780262033589 |q (alk. paper) | ||
020 | |a 1282096184 | ||
020 | |a 9781282096189 | ||
020 | |a 1429414081 | ||
020 | |a 9781429414081 | ||
035 | |a (OCoLC)76824411 |z (OCoLC)144221750 |z (OCoLC)182530233 |z (OCoLC)473855448 |z (OCoLC)482338380 |z (OCoLC)648224249 |z (OCoLC)698448592 |z (OCoLC)815786484 |z (OCoLC)888487196 |z (OCoLC)961552592 |z (OCoLC)962681986 |z (OCoLC)966247738 |z (OCoLC)988479849 |z (OCoLC)991907509 |z (OCoLC)992079045 |z (OCoLC)1011926238 |z (OCoLC)1037506878 |z (OCoLC)1037915633 |z (OCoLC)1038619749 |z (OCoLC)1055357085 |z (OCoLC)1062909239 |z (OCoLC)1081229069 |z (OCoLC)1083554933 |z (OCoLC)1102553906 |z (OCoLC)1125509500 |z (OCoLC)1130046352 | ||
037 | |a 6173 |b MIT Press | ||
037 | |a 9780262255899 |b MIT Press | ||
050 | 4 | |a Q325.75 |b .S42 2006eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
072 | 7 | |a K |2 bicssc | |
082 | 7 | |a 006.3/1 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Semi-supervised learning / |c [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©2006. | ||
300 | |a 1 online resource (x, 508 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Adaptive computation and machine learning | |
504 | |a Includes bibliographical references (pages 479-497). | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. | |
505 | 0 | |a Series Foreword; Preface; 1 -- Introduction to Semi-Supervised Learning; 2 -- A Taxonomy for Semi-Supervised Learning Methods; 3 -- Semi-Supervised Text Classification Using EM; 4 -- Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 -- Probabilistic Semi-Supervised Clustering with Constraints; 6 -- Transductive Support Vector Machines; 7 -- Semi-Supervised Learning Using Semi- Definite Programming; 8 -- Gaussian Processes and the Null-Category Noise Model; 9 -- Entropy Regularization; 10 -- Data-Dependent Regularization. | |
505 | 8 | |a 11 -- Label Propagation and Quadratic Criterion12 -- The Geometric Basis of Semi-Supervised Learning; 13 -- Discrete Regularization; 14 -- Semi-Supervised Learning with Conditional Harmonic Mixing; 15 -- Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 -- Modifying Distances; 18 -- Large-Scale Algorithms; 19 -- Semi-Supervised Protein Classification Using Cluster Kernels; 20 -- Prediction of Protein Function from Networks; 21 -- Analysis of Benchmarks; 22 -- An Augmented PAC Model for Semi- Supervised Learning. | |
505 | 8 | |a 23 -- Metric-Based Approaches for Semi- Supervised Regression and Classification24 -- Transductive Inference and Semi-Supervised Learning; 25 -- A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index. | |
546 | |a English. | ||
650 | 0 | |a Supervised learning (Machine learning) |0 http://id.loc.gov/authorities/subjects/sh94008290 | |
650 | 6 | |a Apprentissage supervisé (Intelligence artificielle) | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Supervised learning (Machine learning) |2 fast | |
653 | |a COMPUTER SCIENCE/Machine Learning & Neural Networks | ||
700 | 1 | |a Chapelle, Olivier. | |
700 | 1 | |a Schölkopf, Bernhard. | |
700 | 1 | |a Zien, Alexander. | |
758 | |i has work: |a Semi-supervised learning (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGFQqvqhPRRX4gg9XkPrtq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Semi-supervised learning. |d Cambridge, Mass. : MIT Press, ©2006 |z 0262033585 |w (DLC) 2006044448 |w (OCoLC)64898359 |
830 | 0 | |a Adaptive computation and machine learning. |0 http://id.loc.gov/authorities/names/n97066095 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=170037 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25453756 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3338523 | ||
938 | |a ebrary |b EBRY |n ebr10173579 | ||
938 | |a EBSCOhost |b EBSC |n 170037 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 209618 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000130718 | ||
938 | |a YBP Library Services |b YANK |n 2493829 | ||
938 | |a YBP Library Services |b YANK |n 3285232 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm76824411 |
---|---|
_version_ | 1816881642839474176 |
adam_text | |
any_adam_object | |
author2 | Chapelle, Olivier Schölkopf, Bernhard Zien, Alexander |
author2_role | |
author2_variant | o c oc b s bs a z az |
author_facet | Chapelle, Olivier Schölkopf, Bernhard Zien, Alexander |
author_sort | Chapelle, Olivier |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.75 .S42 2006eb |
callnumber-search | Q325.75 .S42 2006eb |
callnumber-sort | Q 3325.75 S42 42006EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Series Foreword; Preface; 1 -- Introduction to Semi-Supervised Learning; 2 -- A Taxonomy for Semi-Supervised Learning Methods; 3 -- Semi-Supervised Text Classification Using EM; 4 -- Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 -- Probabilistic Semi-Supervised Clustering with Constraints; 6 -- Transductive Support Vector Machines; 7 -- Semi-Supervised Learning Using Semi- Definite Programming; 8 -- Gaussian Processes and the Null-Category Noise Model; 9 -- Entropy Regularization; 10 -- Data-Dependent Regularization. 11 -- Label Propagation and Quadratic Criterion12 -- The Geometric Basis of Semi-Supervised Learning; 13 -- Discrete Regularization; 14 -- Semi-Supervised Learning with Conditional Harmonic Mixing; 15 -- Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 -- Modifying Distances; 18 -- Large-Scale Algorithms; 19 -- Semi-Supervised Protein Classification Using Cluster Kernels; 20 -- Prediction of Protein Function from Networks; 21 -- Analysis of Benchmarks; 22 -- An Augmented PAC Model for Semi- Supervised Learning. 23 -- Metric-Based Approaches for Semi- Supervised Regression and Classification24 -- Transductive Inference and Semi-Supervised Learning; 25 -- A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index. |
ctrlnum | (OCoLC)76824411 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05828cam a22007694a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm76824411 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">061129s2006 maua ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OTZ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">E7B</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">STBDS</subfield><subfield code="d">JBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">WY@</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUE</subfield><subfield code="d">BRL</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">MERER</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">MITPR</subfield><subfield code="d">A6Q</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">SFB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">144221750</subfield><subfield code="a">182530233</subfield><subfield code="a">473855448</subfield><subfield code="a">482338380</subfield><subfield code="a">648224249</subfield><subfield code="a">698448592</subfield><subfield code="a">815786484</subfield><subfield code="a">888487196</subfield><subfield code="a">961552592</subfield><subfield code="a">962681986</subfield><subfield code="a">966247738</subfield><subfield code="a">988479849</subfield><subfield code="a">991907509</subfield><subfield code="a">992079045</subfield><subfield code="a">1011926238</subfield><subfield code="a">1037506878</subfield><subfield code="a">1037915633</subfield><subfield code="a">1038619749</subfield><subfield code="a">1055357085</subfield><subfield code="a">1062909239</subfield><subfield code="a">1081229069</subfield><subfield code="a">1083554933</subfield><subfield code="a">1102553906</subfield><subfield code="a">1125509500</subfield><subfield code="a">1130046352</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262255899</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262255898</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262033585</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262033589</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282096184</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282096189</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1429414081</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781429414081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)76824411</subfield><subfield code="z">(OCoLC)144221750</subfield><subfield code="z">(OCoLC)182530233</subfield><subfield code="z">(OCoLC)473855448</subfield><subfield code="z">(OCoLC)482338380</subfield><subfield code="z">(OCoLC)648224249</subfield><subfield code="z">(OCoLC)698448592</subfield><subfield code="z">(OCoLC)815786484</subfield><subfield code="z">(OCoLC)888487196</subfield><subfield code="z">(OCoLC)961552592</subfield><subfield code="z">(OCoLC)962681986</subfield><subfield code="z">(OCoLC)966247738</subfield><subfield code="z">(OCoLC)988479849</subfield><subfield code="z">(OCoLC)991907509</subfield><subfield code="z">(OCoLC)992079045</subfield><subfield code="z">(OCoLC)1011926238</subfield><subfield code="z">(OCoLC)1037506878</subfield><subfield code="z">(OCoLC)1037915633</subfield><subfield code="z">(OCoLC)1038619749</subfield><subfield code="z">(OCoLC)1055357085</subfield><subfield code="z">(OCoLC)1062909239</subfield><subfield code="z">(OCoLC)1081229069</subfield><subfield code="z">(OCoLC)1083554933</subfield><subfield code="z">(OCoLC)1102553906</subfield><subfield code="z">(OCoLC)1125509500</subfield><subfield code="z">(OCoLC)1130046352</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">6173</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780262255899</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.75</subfield><subfield code="b">.S42 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">K</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Semi-supervised learning /</subfield><subfield code="c">[edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 508 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Adaptive computation and machine learning</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 479-497).</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Series Foreword; Preface; 1 -- Introduction to Semi-Supervised Learning; 2 -- A Taxonomy for Semi-Supervised Learning Methods; 3 -- Semi-Supervised Text Classification Using EM; 4 -- Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 -- Probabilistic Semi-Supervised Clustering with Constraints; 6 -- Transductive Support Vector Machines; 7 -- Semi-Supervised Learning Using Semi- Definite Programming; 8 -- Gaussian Processes and the Null-Category Noise Model; 9 -- Entropy Regularization; 10 -- Data-Dependent Regularization.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11 -- Label Propagation and Quadratic Criterion12 -- The Geometric Basis of Semi-Supervised Learning; 13 -- Discrete Regularization; 14 -- Semi-Supervised Learning with Conditional Harmonic Mixing; 15 -- Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 -- Modifying Distances; 18 -- Large-Scale Algorithms; 19 -- Semi-Supervised Protein Classification Using Cluster Kernels; 20 -- Prediction of Protein Function from Networks; 21 -- Analysis of Benchmarks; 22 -- An Augmented PAC Model for Semi- Supervised Learning.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">23 -- Metric-Based Approaches for Semi- Supervised Regression and Classification24 -- Transductive Inference and Semi-Supervised Learning; 25 -- A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Supervised learning (Machine learning)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh94008290</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage supervisé (Intelligence artificielle)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Supervised learning (Machine learning)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/Machine Learning & Neural Networks</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chapelle, Olivier.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schölkopf, Bernhard.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zien, Alexander.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Semi-supervised learning (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGFQqvqhPRRX4gg9XkPrtq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Semi-supervised learning.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©2006</subfield><subfield code="z">0262033585</subfield><subfield code="w">(DLC) 2006044448</subfield><subfield code="w">(OCoLC)64898359</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Adaptive computation and machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97066095</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=170037</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25453756</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3338523</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10173579</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">170037</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">209618</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000130718</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2493829</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3285232</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm76824411 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:58Z |
institution | BVB |
isbn | 9780262255899 0262255898 0262033585 9780262033589 1282096184 9781282096189 1429414081 9781429414081 |
language | English |
oclc_num | 76824411 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 508 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | MIT Press, |
record_format | marc |
series | Adaptive computation and machine learning. |
series2 | Adaptive computation and machine learning |
spelling | Semi-supervised learning / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. Cambridge, Mass. : MIT Press, ©2006. 1 online resource (x, 508 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Adaptive computation and machine learning Includes bibliographical references (pages 479-497). Print version record. A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems, this text looks at state-of-the-art algorithms, applications benchmark experiments, and directions for future research. Series Foreword; Preface; 1 -- Introduction to Semi-Supervised Learning; 2 -- A Taxonomy for Semi-Supervised Learning Methods; 3 -- Semi-Supervised Text Classification Using EM; 4 -- Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 -- Probabilistic Semi-Supervised Clustering with Constraints; 6 -- Transductive Support Vector Machines; 7 -- Semi-Supervised Learning Using Semi- Definite Programming; 8 -- Gaussian Processes and the Null-Category Noise Model; 9 -- Entropy Regularization; 10 -- Data-Dependent Regularization. 11 -- Label Propagation and Quadratic Criterion12 -- The Geometric Basis of Semi-Supervised Learning; 13 -- Discrete Regularization; 14 -- Semi-Supervised Learning with Conditional Harmonic Mixing; 15 -- Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 -- Modifying Distances; 18 -- Large-Scale Algorithms; 19 -- Semi-Supervised Protein Classification Using Cluster Kernels; 20 -- Prediction of Protein Function from Networks; 21 -- Analysis of Benchmarks; 22 -- An Augmented PAC Model for Semi- Supervised Learning. 23 -- Metric-Based Approaches for Semi- Supervised Regression and Classification24 -- Transductive Inference and Semi-Supervised Learning; 25 -- A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index. English. Supervised learning (Machine learning) http://id.loc.gov/authorities/subjects/sh94008290 Apprentissage supervisé (Intelligence artificielle) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Supervised learning (Machine learning) fast COMPUTER SCIENCE/Machine Learning & Neural Networks Chapelle, Olivier. Schölkopf, Bernhard. Zien, Alexander. has work: Semi-supervised learning (Text) https://id.oclc.org/worldcat/entity/E39PCGFQqvqhPRRX4gg9XkPrtq https://id.oclc.org/worldcat/ontology/hasWork Print version: Semi-supervised learning. Cambridge, Mass. : MIT Press, ©2006 0262033585 (DLC) 2006044448 (OCoLC)64898359 Adaptive computation and machine learning. http://id.loc.gov/authorities/names/n97066095 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=170037 Volltext |
spellingShingle | Semi-supervised learning / Adaptive computation and machine learning. Series Foreword; Preface; 1 -- Introduction to Semi-Supervised Learning; 2 -- A Taxonomy for Semi-Supervised Learning Methods; 3 -- Semi-Supervised Text Classification Using EM; 4 -- Risks of Semi-Supervised Learning: How Unlabeled Data Can Degrade Performance of Generative Classifiers; 5 -- Probabilistic Semi-Supervised Clustering with Constraints; 6 -- Transductive Support Vector Machines; 7 -- Semi-Supervised Learning Using Semi- Definite Programming; 8 -- Gaussian Processes and the Null-Category Noise Model; 9 -- Entropy Regularization; 10 -- Data-Dependent Regularization. 11 -- Label Propagation and Quadratic Criterion12 -- The Geometric Basis of Semi-Supervised Learning; 13 -- Discrete Regularization; 14 -- Semi-Supervised Learning with Conditional Harmonic Mixing; 15 -- Graph Kernels by Spectral Transforms; 16- Spectral Methods for Dimensionality Reduction; 17 -- Modifying Distances; 18 -- Large-Scale Algorithms; 19 -- Semi-Supervised Protein Classification Using Cluster Kernels; 20 -- Prediction of Protein Function from Networks; 21 -- Analysis of Benchmarks; 22 -- An Augmented PAC Model for Semi- Supervised Learning. 23 -- Metric-Based Approaches for Semi- Supervised Regression and Classification24 -- Transductive Inference and Semi-Supervised Learning; 25 -- A Discussion of Semi-Supervised Learning and Transduction; References; Notation and Symbols; Contributors; Index. Supervised learning (Machine learning) http://id.loc.gov/authorities/subjects/sh94008290 Apprentissage supervisé (Intelligence artificielle) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Supervised learning (Machine learning) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh94008290 |
title | Semi-supervised learning / |
title_auth | Semi-supervised learning / |
title_exact_search | Semi-supervised learning / |
title_full | Semi-supervised learning / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. |
title_fullStr | Semi-supervised learning / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. |
title_full_unstemmed | Semi-supervised learning / [edited by] Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. |
title_short | Semi-supervised learning / |
title_sort | semi supervised learning |
topic | Supervised learning (Machine learning) http://id.loc.gov/authorities/subjects/sh94008290 Apprentissage supervisé (Intelligence artificielle) COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Supervised learning (Machine learning) fast |
topic_facet | Supervised learning (Machine learning) Apprentissage supervisé (Intelligence artificielle) COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=170037 |
work_keys_str_mv | AT chapelleolivier semisupervisedlearning AT scholkopfbernhard semisupervisedlearning AT zienalexander semisupervisedlearning |