Optimal solution of nonlinear equations /:
Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any re...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2001.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any reader working in the area of Information-Based Complexity. The worst-case settings are analysed here. Several classes of functions are studied with special empahsis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises. |
Beschreibung: | 1 online resource (xiii, 238 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 1429400617 9781429400619 1280528958 9781280528958 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm71325495 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 060914s2001 enka ob 001 0 eng d | ||
010 | |z 99045246 | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d OCLCG |d OCLCQ |d E7B |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d OCLCO |d NLGGC |d OCLCQ |d AZK |d LOA |d COCUF |d AGLDB |d MOR |d PIFAG |d OTZ |d OCLCQ |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d K6U |d UKCRE |d INARC |d OCLCO |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 148599501 |a 646787493 |a 764507504 |a 778206594 |a 814459010 |a 819511567 |a 821693219 |a 961536558 |a 962632021 |a 966203172 |a 988448916 |a 992112681 |a 994925265 |a 1035705557 |a 1037739932 |a 1038578042 |a 1045474558 |a 1055356822 |a 1065060776 |a 1081229175 |a 1153478220 |a 1228564063 | ||
020 | |a 1429400617 |q (electronic bk.) | ||
020 | |a 9781429400619 | ||
020 | |a 1280528958 | ||
020 | |a 9781280528958 | ||
020 | |z 0195106903 |q (acid-free paper) | ||
020 | |z 9780195106909 | ||
035 | |a (OCoLC)71325495 |z (OCoLC)148599501 |z (OCoLC)646787493 |z (OCoLC)764507504 |z (OCoLC)778206594 |z (OCoLC)814459010 |z (OCoLC)819511567 |z (OCoLC)821693219 |z (OCoLC)961536558 |z (OCoLC)962632021 |z (OCoLC)966203172 |z (OCoLC)988448916 |z (OCoLC)992112681 |z (OCoLC)994925265 |z (OCoLC)1035705557 |z (OCoLC)1037739932 |z (OCoLC)1038578042 |z (OCoLC)1045474558 |z (OCoLC)1055356822 |z (OCoLC)1065060776 |z (OCoLC)1081229175 |z (OCoLC)1153478220 |z (OCoLC)1228564063 | ||
050 | 4 | |a QA377 |b .S4918 2001eb | |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
072 | 7 | |a PBF |2 bicssc | |
082 | 7 | |a 515/.355 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Sikorski, Krzysztof A., |d 1953- |1 https://id.oclc.org/worldcat/entity/E39PCjBtb9JdMVyVkh9whBRJwy |0 http://id.loc.gov/authorities/names/n95020873 | |
245 | 1 | 0 | |a Optimal solution of nonlinear equations / |c Krzysztof A. Sikorski. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2001. | ||
300 | |a 1 online resource (xiii, 238 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any reader working in the area of Information-Based Complexity. The worst-case settings are analysed here. Several classes of functions are studied with special empahsis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises. | ||
650 | 0 | |a Differential equations, Nonlinear |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85037908 | |
650 | 0 | |a Mathematical optimization. |0 http://id.loc.gov/authorities/subjects/sh85082127 | |
650 | 0 | |a Fixed point theory. |0 http://id.loc.gov/authorities/subjects/sh85048934 | |
650 | 0 | |a Topological degree. |0 http://id.loc.gov/authorities/subjects/sh85036478 | |
650 | 6 | |a Équations différentielles non linéaires |x Solutions numériques. | |
650 | 6 | |a Optimisation mathématique. | |
650 | 6 | |a Théorème du point fixe. | |
650 | 6 | |a Degré topologique. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |x Numerical solutions |2 fast | |
650 | 7 | |a Fixed point theory |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Topological degree |2 fast | |
776 | 0 | 8 | |i Print version: |a Sikorski, Krzysztof A., 1953- |t Optimal solution of nonlinear equations. |d Oxford ; New York : Oxford University Press, 2001 |z 0195106903 |w (DLC) 99045246 |w (OCoLC)43227587 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=169121 |3 Volltext |
938 | |a Internet Archive |b INAR |n optimalsolutiono0000siko | ||
938 | |a ebrary |b EBRY |n ebr10269042 | ||
938 | |a EBSCOhost |b EBSC |n 169121 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 52895 | ||
938 | |a YBP Library Services |b YANK |n 2470430 | ||
938 | |a YBP Library Services |b YANK |n 2935351 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm71325495 |
---|---|
_version_ | 1816881641360982016 |
adam_text | |
any_adam_object | |
author | Sikorski, Krzysztof A., 1953- |
author_GND | http://id.loc.gov/authorities/names/n95020873 |
author_facet | Sikorski, Krzysztof A., 1953- |
author_role | |
author_sort | Sikorski, Krzysztof A., 1953- |
author_variant | k a s ka kas |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .S4918 2001eb |
callnumber-search | QA377 .S4918 2001eb |
callnumber-sort | QA 3377 S4918 42001EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)71325495 |
dewey-full | 515/.355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.355 |
dewey-search | 515/.355 |
dewey-sort | 3515 3355 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04377cam a22006614a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm71325495 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">060914s2001 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 99045246 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKCRE</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">148599501</subfield><subfield code="a">646787493</subfield><subfield code="a">764507504</subfield><subfield code="a">778206594</subfield><subfield code="a">814459010</subfield><subfield code="a">819511567</subfield><subfield code="a">821693219</subfield><subfield code="a">961536558</subfield><subfield code="a">962632021</subfield><subfield code="a">966203172</subfield><subfield code="a">988448916</subfield><subfield code="a">992112681</subfield><subfield code="a">994925265</subfield><subfield code="a">1035705557</subfield><subfield code="a">1037739932</subfield><subfield code="a">1038578042</subfield><subfield code="a">1045474558</subfield><subfield code="a">1055356822</subfield><subfield code="a">1065060776</subfield><subfield code="a">1081229175</subfield><subfield code="a">1153478220</subfield><subfield code="a">1228564063</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1429400617</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781429400619</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280528958</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280528958</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0195106903</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780195106909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71325495</subfield><subfield code="z">(OCoLC)148599501</subfield><subfield code="z">(OCoLC)646787493</subfield><subfield code="z">(OCoLC)764507504</subfield><subfield code="z">(OCoLC)778206594</subfield><subfield code="z">(OCoLC)814459010</subfield><subfield code="z">(OCoLC)819511567</subfield><subfield code="z">(OCoLC)821693219</subfield><subfield code="z">(OCoLC)961536558</subfield><subfield code="z">(OCoLC)962632021</subfield><subfield code="z">(OCoLC)966203172</subfield><subfield code="z">(OCoLC)988448916</subfield><subfield code="z">(OCoLC)992112681</subfield><subfield code="z">(OCoLC)994925265</subfield><subfield code="z">(OCoLC)1035705557</subfield><subfield code="z">(OCoLC)1037739932</subfield><subfield code="z">(OCoLC)1038578042</subfield><subfield code="z">(OCoLC)1045474558</subfield><subfield code="z">(OCoLC)1055356822</subfield><subfield code="z">(OCoLC)1065060776</subfield><subfield code="z">(OCoLC)1081229175</subfield><subfield code="z">(OCoLC)1153478220</subfield><subfield code="z">(OCoLC)1228564063</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.S4918 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.355</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sikorski, Krzysztof A.,</subfield><subfield code="d">1953-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjBtb9JdMVyVkh9whBRJwy</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95020873</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimal solution of nonlinear equations /</subfield><subfield code="c">Krzysztof A. Sikorski.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 238 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any reader working in the area of Information-Based Complexity. The worst-case settings are analysed here. Several classes of functions are studied with special empahsis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037908</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical optimization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082127</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fixed point theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048934</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological degree.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85036478</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles non linéaires</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optimisation mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorème du point fixe.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Degré topologique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fixed point theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological degree</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sikorski, Krzysztof A., 1953-</subfield><subfield code="t">Optimal solution of nonlinear equations.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2001</subfield><subfield code="z">0195106903</subfield><subfield code="w">(DLC) 99045246</subfield><subfield code="w">(OCoLC)43227587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=169121</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">optimalsolutiono0000siko</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10269042</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">169121</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">52895</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2470430</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2935351</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm71325495 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:57Z |
institution | BVB |
isbn | 1429400617 9781429400619 1280528958 9781280528958 |
language | English |
oclc_num | 71325495 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 238 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Sikorski, Krzysztof A., 1953- https://id.oclc.org/worldcat/entity/E39PCjBtb9JdMVyVkh9whBRJwy http://id.loc.gov/authorities/names/n95020873 Optimal solution of nonlinear equations / Krzysztof A. Sikorski. Oxford ; New York : Oxford University Press, 2001. 1 online resource (xiii, 238 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Optimal Solution of Nonlinear Equations is a text/monograph designed to provide an overview of optimal computational methods for the solution of nonlinear equations, fixed points of contractive and noncontractive mapping, and for the computation of the topological degree. It is of interest to any reader working in the area of Information-Based Complexity. The worst-case settings are analysed here. Several classes of functions are studied with special empahsis on tight complexity bounds and methods which are close to or achieve these bounds. Each chapter ends with exercises, including companies and open-ended research based exercises. Differential equations, Nonlinear Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037908 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Fixed point theory. http://id.loc.gov/authorities/subjects/sh85048934 Topological degree. http://id.loc.gov/authorities/subjects/sh85036478 Équations différentielles non linéaires Solutions numériques. Optimisation mathématique. Théorème du point fixe. Degré topologique. MATHEMATICS Differential Equations General. bisacsh Differential equations, Nonlinear Numerical solutions fast Fixed point theory fast Mathematical optimization fast Topological degree fast Print version: Sikorski, Krzysztof A., 1953- Optimal solution of nonlinear equations. Oxford ; New York : Oxford University Press, 2001 0195106903 (DLC) 99045246 (OCoLC)43227587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=169121 Volltext |
spellingShingle | Sikorski, Krzysztof A., 1953- Optimal solution of nonlinear equations / Differential equations, Nonlinear Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037908 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Fixed point theory. http://id.loc.gov/authorities/subjects/sh85048934 Topological degree. http://id.loc.gov/authorities/subjects/sh85036478 Équations différentielles non linéaires Solutions numériques. Optimisation mathématique. Théorème du point fixe. Degré topologique. MATHEMATICS Differential Equations General. bisacsh Differential equations, Nonlinear Numerical solutions fast Fixed point theory fast Mathematical optimization fast Topological degree fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037908 http://id.loc.gov/authorities/subjects/sh85082127 http://id.loc.gov/authorities/subjects/sh85048934 http://id.loc.gov/authorities/subjects/sh85036478 |
title | Optimal solution of nonlinear equations / |
title_auth | Optimal solution of nonlinear equations / |
title_exact_search | Optimal solution of nonlinear equations / |
title_full | Optimal solution of nonlinear equations / Krzysztof A. Sikorski. |
title_fullStr | Optimal solution of nonlinear equations / Krzysztof A. Sikorski. |
title_full_unstemmed | Optimal solution of nonlinear equations / Krzysztof A. Sikorski. |
title_short | Optimal solution of nonlinear equations / |
title_sort | optimal solution of nonlinear equations |
topic | Differential equations, Nonlinear Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037908 Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Fixed point theory. http://id.loc.gov/authorities/subjects/sh85048934 Topological degree. http://id.loc.gov/authorities/subjects/sh85036478 Équations différentielles non linéaires Solutions numériques. Optimisation mathématique. Théorème du point fixe. Degré topologique. MATHEMATICS Differential Equations General. bisacsh Differential equations, Nonlinear Numerical solutions fast Fixed point theory fast Mathematical optimization fast Topological degree fast |
topic_facet | Differential equations, Nonlinear Numerical solutions. Mathematical optimization. Fixed point theory. Topological degree. Équations différentielles non linéaires Solutions numériques. Optimisation mathématique. Théorème du point fixe. Degré topologique. MATHEMATICS Differential Equations General. Differential equations, Nonlinear Numerical solutions Fixed point theory Mathematical optimization Topological degree |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=169121 |
work_keys_str_mv | AT sikorskikrzysztofa optimalsolutionofnonlinearequations |