Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces /:
Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of com...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Imperial College Press,
©2005.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin. |
Beschreibung: | 1 online resource (xv, 354 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 186094714X 9781860947148 9781860945755 1860945759 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm71291234 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 060911s2005 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d OCLCG |d OCLCQ |d IDEBK |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d OCLCO |d NLGGC |d OCLCQ |d IOD |d CUY |d DKDLA |d ADU |d E7B |d CNMTR |d STF |d OCLCQ |d AZK |d COCUF |d MOR |d PIFBR |d OCLCQ |d HTC |d OCLCQ |d U3W |d WRM |d VTS |d AGLDB |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d AU@ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 144217222 |a 232159977 |a 473069442 |a 487742586 |a 614988555 |a 648230362 |a 722567311 |a 888790292 |a 961665343 |a 962578745 | ||
020 | |a 186094714X |q (electronic bk.) | ||
020 | |a 9781860947148 | ||
020 | |a 9781860945755 | ||
020 | |a 1860945759 | ||
035 | |a (OCoLC)71291234 |z (OCoLC)144217222 |z (OCoLC)232159977 |z (OCoLC)473069442 |z (OCoLC)487742586 |z (OCoLC)614988555 |z (OCoLC)648230362 |z (OCoLC)722567311 |z (OCoLC)888790292 |z (OCoLC)961665343 |z (OCoLC)962578745 | ||
050 | 4 | |a QA427 |b .R45 2005eb | |
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
082 | 7 | |a 515/.732 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Reich, Simeon. | |
245 | 1 | 0 | |a Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / |c Simeon Reich, David Shoikhet. |
260 | |a London : |b Imperial College Press, |c ©2005. | ||
300 | |a 1 online resource (xv, 354 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin. | ||
505 | 0 | |a Mappings in metric and normed spaces -- Differentiate and holomorphic mappings in banach spaces -- Hyperbolic metrics on domains in complex banach spaces -- Some fixed point principles -- The Denjoy-Wolff fixed point theory -- Generation theory for one-parameter semigroups -- Flow-invariance conditions -- Stationary points of continuous semigroups -- Asymptotic behavior of continuous flows -- Geometry of domains in banach spaces. | |
650 | 0 | |a Nonlinear theories. |0 http://id.loc.gov/authorities/subjects/sh85092332 | |
650 | 0 | |a Banach spaces. |0 http://id.loc.gov/authorities/subjects/sh85011441 | |
650 | 6 | |a Théories non linéaires. | |
650 | 6 | |a Espaces de Banach. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Banach spaces |2 fast | |
650 | 7 | |a Nonlinear theories |2 fast | |
700 | 1 | |a Shoiykhet, David, |d 1953- |1 https://id.oclc.org/worldcat/entity/E39PCjJHvQQ6WfGHCvY6xmchpd |0 http://id.loc.gov/authorities/names/n93110304 | |
758 | |i has work: |a Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH4QPFvhykf8KkcbJrYmv3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Reich, Simeon. |t Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces. |d London : Imperial College Press, ©2005 |z 1860945759 |w (DLC) 2006277235 |w (OCoLC)61701935 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167289 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24682970 | ||
938 | |a ebrary |b EBRY |n ebr10173928 | ||
938 | |a EBSCOhost |b EBSC |n 167289 | ||
938 | |a YBP Library Services |b YANK |n 2470456 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm71291234 |
---|---|
_version_ | 1816881641274998784 |
adam_text | |
any_adam_object | |
author | Reich, Simeon |
author2 | Shoiykhet, David, 1953- |
author2_role | |
author2_variant | d s ds |
author_GND | http://id.loc.gov/authorities/names/n93110304 |
author_facet | Reich, Simeon Shoiykhet, David, 1953- |
author_role | |
author_sort | Reich, Simeon |
author_variant | s r sr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA427 |
callnumber-raw | QA427 .R45 2005eb |
callnumber-search | QA427 .R45 2005eb |
callnumber-sort | QA 3427 R45 42005EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Mappings in metric and normed spaces -- Differentiate and holomorphic mappings in banach spaces -- Hyperbolic metrics on domains in complex banach spaces -- Some fixed point principles -- The Denjoy-Wolff fixed point theory -- Generation theory for one-parameter semigroups -- Flow-invariance conditions -- Stationary points of continuous semigroups -- Asymptotic behavior of continuous flows -- Geometry of domains in banach spaces. |
ctrlnum | (OCoLC)71291234 |
dewey-full | 515/.732 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.732 |
dewey-search | 515/.732 |
dewey-sort | 3515 3732 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04038cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm71291234 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">060911s2005 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOD</subfield><subfield code="d">CUY</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">CNMTR</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HTC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">144217222</subfield><subfield code="a">232159977</subfield><subfield code="a">473069442</subfield><subfield code="a">487742586</subfield><subfield code="a">614988555</subfield><subfield code="a">648230362</subfield><subfield code="a">722567311</subfield><subfield code="a">888790292</subfield><subfield code="a">961665343</subfield><subfield code="a">962578745</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">186094714X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860947148</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860945755</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945759</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71291234</subfield><subfield code="z">(OCoLC)144217222</subfield><subfield code="z">(OCoLC)232159977</subfield><subfield code="z">(OCoLC)473069442</subfield><subfield code="z">(OCoLC)487742586</subfield><subfield code="z">(OCoLC)614988555</subfield><subfield code="z">(OCoLC)648230362</subfield><subfield code="z">(OCoLC)722567311</subfield><subfield code="z">(OCoLC)888790292</subfield><subfield code="z">(OCoLC)961665343</subfield><subfield code="z">(OCoLC)962578745</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA427</subfield><subfield code="b">.R45 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.732</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Reich, Simeon.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces /</subfield><subfield code="c">Simeon Reich, David Shoikhet.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">©2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 354 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Mappings in metric and normed spaces -- Differentiate and holomorphic mappings in banach spaces -- Hyperbolic metrics on domains in complex banach spaces -- Some fixed point principles -- The Denjoy-Wolff fixed point theory -- Generation theory for one-parameter semigroups -- Flow-invariance conditions -- Stationary points of continuous semigroups -- Asymptotic behavior of continuous flows -- Geometry of domains in banach spaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear theories.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092332</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Banach spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85011441</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théories non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Banach.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Transformations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Banach spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear theories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shoiykhet, David,</subfield><subfield code="d">1953-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJHvQQ6WfGHCvY6xmchpd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93110304</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH4QPFvhykf8KkcbJrYmv3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Reich, Simeon.</subfield><subfield code="t">Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces.</subfield><subfield code="d">London : Imperial College Press, ©2005</subfield><subfield code="z">1860945759</subfield><subfield code="w">(DLC) 2006277235</subfield><subfield code="w">(OCoLC)61701935</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167289</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24682970</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10173928</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">167289</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2470456</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm71291234 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:15:57Z |
institution | BVB |
isbn | 186094714X 9781860947148 9781860945755 1860945759 |
language | English |
oclc_num | 71291234 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 354 pages) |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Imperial College Press, |
record_format | marc |
spelling | Reich, Simeon. Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / Simeon Reich, David Shoikhet. London : Imperial College Press, ©2005. 1 online resource (xv, 354 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Includes bibliographical references and index. Print version record. Nonlinear semigroup theory is not only of intrinsic interest, but is also important in the study of evolution problems. In the last forty years, the generation theory of flows of holomorphic mappings has been of great interest in the theory of Markov stochastic branching processes, the theory of composition operators, control theory, and optimization. It transpires that the asymptotic behavior of solutions to evolution equations is applicable to the study of the geometry of certain domains in complex spaces. Readers are provided with a systematic overview of many results concerning both nonlin. Mappings in metric and normed spaces -- Differentiate and holomorphic mappings in banach spaces -- Hyperbolic metrics on domains in complex banach spaces -- Some fixed point principles -- The Denjoy-Wolff fixed point theory -- Generation theory for one-parameter semigroups -- Flow-invariance conditions -- Stationary points of continuous semigroups -- Asymptotic behavior of continuous flows -- Geometry of domains in banach spaces. Nonlinear theories. http://id.loc.gov/authorities/subjects/sh85092332 Banach spaces. http://id.loc.gov/authorities/subjects/sh85011441 Théories non linéaires. Espaces de Banach. MATHEMATICS Transformations. bisacsh Banach spaces fast Nonlinear theories fast Shoiykhet, David, 1953- https://id.oclc.org/worldcat/entity/E39PCjJHvQQ6WfGHCvY6xmchpd http://id.loc.gov/authorities/names/n93110304 has work: Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces (Text) https://id.oclc.org/worldcat/entity/E39PCH4QPFvhykf8KkcbJrYmv3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Reich, Simeon. Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces. London : Imperial College Press, ©2005 1860945759 (DLC) 2006277235 (OCoLC)61701935 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167289 Volltext |
spellingShingle | Reich, Simeon Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / Mappings in metric and normed spaces -- Differentiate and holomorphic mappings in banach spaces -- Hyperbolic metrics on domains in complex banach spaces -- Some fixed point principles -- The Denjoy-Wolff fixed point theory -- Generation theory for one-parameter semigroups -- Flow-invariance conditions -- Stationary points of continuous semigroups -- Asymptotic behavior of continuous flows -- Geometry of domains in banach spaces. Nonlinear theories. http://id.loc.gov/authorities/subjects/sh85092332 Banach spaces. http://id.loc.gov/authorities/subjects/sh85011441 Théories non linéaires. Espaces de Banach. MATHEMATICS Transformations. bisacsh Banach spaces fast Nonlinear theories fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85092332 http://id.loc.gov/authorities/subjects/sh85011441 |
title | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / |
title_auth | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / |
title_exact_search | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / |
title_full | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / Simeon Reich, David Shoikhet. |
title_fullStr | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / Simeon Reich, David Shoikhet. |
title_full_unstemmed | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / Simeon Reich, David Shoikhet. |
title_short | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces / |
title_sort | nonlinear semigroups fixed points and geometry of domains in banach spaces |
topic | Nonlinear theories. http://id.loc.gov/authorities/subjects/sh85092332 Banach spaces. http://id.loc.gov/authorities/subjects/sh85011441 Théories non linéaires. Espaces de Banach. MATHEMATICS Transformations. bisacsh Banach spaces fast Nonlinear theories fast |
topic_facet | Nonlinear theories. Banach spaces. Théories non linéaires. Espaces de Banach. MATHEMATICS Transformations. Banach spaces Nonlinear theories |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167289 |
work_keys_str_mv | AT reichsimeon nonlinearsemigroupsfixedpointsandgeometryofdomainsinbanachspaces AT shoiykhetdavid nonlinearsemigroupsfixedpointsandgeometryofdomainsinbanachspaces |