Orthogonal polynomials :: computation and approximation /
Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2004.
|
Schriftenreihe: | Numerical mathematics and scientific computation.
Oxford science publications. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety. |
Beschreibung: | 1 online resource (viii, 301 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 261-282) and index. |
ISBN: | 1423771087 9781423771081 9786610758869 6610758867 9780198506720 0198506724 1280758864 9781280758867 0191545058 9780191545054 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm68635880 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 060511s2004 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCQ |d TUU |d OCLCQ |d CN8ML |d QE2 |d IDEBK |d OCLCO |d OCLCQ |d OCLCF |d NLGGC |d OCLCQ |d AGLDB |d OCLCQ |d WY@ |d TXI |d LUE |d COCUF |d OCLCQ |d VTS |d CEF |d OCLCQ |d LHU |d STF |d CNTRU |d YDX |d EBLCP |d OCLCQ |d SFB |d VLY |d UKAHL |d OCLCO |d VT2 |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
015 | |a GBA4X6447 |2 bnb | ||
019 | |a 150362674 |a 314212802 |a 455959767 |a 756878998 |a 814476035 |a 824558931 |a 1044143776 |a 1044601749 |a 1056305564 |a 1056393131 |a 1097272551 |a 1125860500 |a 1162215901 |a 1286905958 | ||
020 | |a 1423771087 |q (electronic bk.) | ||
020 | |a 9781423771081 |q (electronic bk.) | ||
020 | |a 9786610758869 | ||
020 | |a 6610758867 | ||
020 | |a 9780198506720 | ||
020 | |a 0198506724 | ||
020 | |a 1280758864 | ||
020 | |a 9781280758867 | ||
020 | |a 0191545058 | ||
020 | |a 9780191545054 | ||
020 | |z 0198506724 |q (Cloth) | ||
035 | |a (OCoLC)68635880 |z (OCoLC)150362674 |z (OCoLC)314212802 |z (OCoLC)455959767 |z (OCoLC)756878998 |z (OCoLC)814476035 |z (OCoLC)824558931 |z (OCoLC)1044143776 |z (OCoLC)1044601749 |z (OCoLC)1056305564 |z (OCoLC)1056393131 |z (OCoLC)1097272551 |z (OCoLC)1125860500 |z (OCoLC)1162215901 |z (OCoLC)1286905958 | ||
037 | |a 075886 |b MIL | ||
037 | |b CRKN/MyiLibrary |c CostDepend |f FormOnline |g AccessRestricted |n GovNo | ||
050 | 4 | |a QA404.5 |b .G356 2004eb | |
055 | 1 | 3 | |a QA404.5 |b .G356 2004eb |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.55 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Gautschi, Walter, |d 1927- |e author. |0 http://id.loc.gov/authorities/names/n89617266 | |
245 | 1 | 0 | |a Orthogonal polynomials : |b computation and approximation / |c Walter Gautschi. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2004. | ||
300 | |a 1 online resource (viii, 301 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Numerical mathematics and scientific computation | |
490 | 1 | |a Oxford science publications | |
504 | |a Includes bibliographical references (pages 261-282) and index. | ||
505 | 0 | |a Basic theory: Orthogonal polynomials -- Properties of orthogonal polynomials -- Three-term recurrence relation -- Quadrature rules -- Classical orthogonal polynomials -- Kernel polynomials -- Sobolev orthogonal polynomials -- Orthogonal polynomials on the semicircle -- Notes to Chapter 1 -- Computational methods: Moment-based methods -- Discretization methods -- Computing Cauchy integrals of orthogonal polynomials -- Modification algorithms -- Computing Sobolev orthogonal polynomials -- Notes to Chapter 2 -- Applications: Quadrature -- Least squares approximation -- Moment-preserving spline approximation -- Slowly convergent series -- Notes to Chapter 3. | |
588 | 0 | |a Print version record. | |
520 | |a Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety. | ||
546 | |a English. | ||
650 | 0 | |a Orthogonal polynomials. |0 http://id.loc.gov/authorities/subjects/sh85095794 | |
650 | 6 | |a Polynômes orthogonaux. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Orthogonal polynomials |2 fast | |
650 | 1 | 7 | |a Orthogonale reeksen. |2 gtt |
758 | |i has work: |a Orthogonal polynomials (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGGJFjc4FKCpCbCKgdrDv3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Gautschi, Walter. |t Orthogonal polynomials. |d Oxford ; New York : Oxford University Press, 2004 |z 0198506724 |w (DLC) 2004556094 |w (OCoLC)55622265 |
830 | 0 | |a Numerical mathematics and scientific computation. |0 http://id.loc.gov/authorities/names/nr95041471 | |
830 | 0 | |a Oxford science publications. |0 http://id.loc.gov/authorities/names/n42027424 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=159383 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37530194 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5602804 | ||
938 | |a EBSCOhost |b EBSC |n 159383 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 75886 | ||
938 | |a YBP Library Services |b YANK |n 2426569 | ||
938 | |a YBP Library Services |b YANK |n 16324193 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm68635880 |
---|---|
_version_ | 1816881636303699968 |
adam_text | |
any_adam_object | |
author | Gautschi, Walter, 1927- |
author_GND | http://id.loc.gov/authorities/names/n89617266 |
author_facet | Gautschi, Walter, 1927- |
author_role | aut |
author_sort | Gautschi, Walter, 1927- |
author_variant | w g wg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA404 |
callnumber-raw | QA404.5 .G356 2004eb |
callnumber-search | QA404.5 .G356 2004eb |
callnumber-sort | QA 3404.5 G356 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Basic theory: Orthogonal polynomials -- Properties of orthogonal polynomials -- Three-term recurrence relation -- Quadrature rules -- Classical orthogonal polynomials -- Kernel polynomials -- Sobolev orthogonal polynomials -- Orthogonal polynomials on the semicircle -- Notes to Chapter 1 -- Computational methods: Moment-based methods -- Discretization methods -- Computing Cauchy integrals of orthogonal polynomials -- Modification algorithms -- Computing Sobolev orthogonal polynomials -- Notes to Chapter 2 -- Applications: Quadrature -- Least squares approximation -- Moment-preserving spline approximation -- Slowly convergent series -- Notes to Chapter 3. |
ctrlnum | (OCoLC)68635880 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04771cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm68635880 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">060511s2004 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CN8ML</subfield><subfield code="d">QE2</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">TXI</subfield><subfield code="d">LUE</subfield><subfield code="d">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LHU</subfield><subfield code="d">STF</subfield><subfield code="d">CNTRU</subfield><subfield code="d">YDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">VLY</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA4X6447</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">150362674</subfield><subfield code="a">314212802</subfield><subfield code="a">455959767</subfield><subfield code="a">756878998</subfield><subfield code="a">814476035</subfield><subfield code="a">824558931</subfield><subfield code="a">1044143776</subfield><subfield code="a">1044601749</subfield><subfield code="a">1056305564</subfield><subfield code="a">1056393131</subfield><subfield code="a">1097272551</subfield><subfield code="a">1125860500</subfield><subfield code="a">1162215901</subfield><subfield code="a">1286905958</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1423771087</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781423771081</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786610758869</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6610758867</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506720</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198506724</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280758864</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280758867</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191545058</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191545054</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198506724</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)68635880</subfield><subfield code="z">(OCoLC)150362674</subfield><subfield code="z">(OCoLC)314212802</subfield><subfield code="z">(OCoLC)455959767</subfield><subfield code="z">(OCoLC)756878998</subfield><subfield code="z">(OCoLC)814476035</subfield><subfield code="z">(OCoLC)824558931</subfield><subfield code="z">(OCoLC)1044143776</subfield><subfield code="z">(OCoLC)1044601749</subfield><subfield code="z">(OCoLC)1056305564</subfield><subfield code="z">(OCoLC)1056393131</subfield><subfield code="z">(OCoLC)1097272551</subfield><subfield code="z">(OCoLC)1125860500</subfield><subfield code="z">(OCoLC)1162215901</subfield><subfield code="z">(OCoLC)1286905958</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">075886</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">CRKN/MyiLibrary</subfield><subfield code="c">CostDepend</subfield><subfield code="f">FormOnline</subfield><subfield code="g">AccessRestricted</subfield><subfield code="n">GovNo</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA404.5</subfield><subfield code="b">.G356 2004eb</subfield></datafield><datafield tag="055" ind1="1" ind2="3"><subfield code="a">QA404.5</subfield><subfield code="b">.G356 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gautschi, Walter,</subfield><subfield code="d">1927-</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n89617266</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Orthogonal polynomials :</subfield><subfield code="b">computation and approximation /</subfield><subfield code="c">Walter Gautschi.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 301 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Numerical mathematics and scientific computation</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford science publications</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 261-282) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Basic theory: Orthogonal polynomials -- Properties of orthogonal polynomials -- Three-term recurrence relation -- Quadrature rules -- Classical orthogonal polynomials -- Kernel polynomials -- Sobolev orthogonal polynomials -- Orthogonal polynomials on the semicircle -- Notes to Chapter 1 -- Computational methods: Moment-based methods -- Discretization methods -- Computing Cauchy integrals of orthogonal polynomials -- Modification algorithms -- Computing Sobolev orthogonal polynomials -- Notes to Chapter 2 -- Applications: Quadrature -- Least squares approximation -- Moment-preserving spline approximation -- Slowly convergent series -- Notes to Chapter 3.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Orthogonal polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85095794</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes orthogonaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonal polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Orthogonale reeksen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Orthogonal polynomials (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGGJFjc4FKCpCbCKgdrDv3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gautschi, Walter.</subfield><subfield code="t">Orthogonal polynomials.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2004</subfield><subfield code="z">0198506724</subfield><subfield code="w">(DLC) 2004556094</subfield><subfield code="w">(OCoLC)55622265</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Numerical mathematics and scientific computation.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr95041471</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford science publications.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42027424</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=159383</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37530194</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5602804</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">159383</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">75886</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2426569</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16324193</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm68635880 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:52Z |
institution | BVB |
isbn | 1423771087 9781423771081 9786610758869 6610758867 9780198506720 0198506724 1280758864 9781280758867 0191545058 9780191545054 |
language | English |
oclc_num | 68635880 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 301 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Oxford University Press, |
record_format | marc |
series | Numerical mathematics and scientific computation. Oxford science publications. |
series2 | Numerical mathematics and scientific computation Oxford science publications |
spelling | Gautschi, Walter, 1927- author. http://id.loc.gov/authorities/names/n89617266 Orthogonal polynomials : computation and approximation / Walter Gautschi. Oxford ; New York : Oxford University Press, 2004. 1 online resource (viii, 301 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Numerical mathematics and scientific computation Oxford science publications Includes bibliographical references (pages 261-282) and index. Basic theory: Orthogonal polynomials -- Properties of orthogonal polynomials -- Three-term recurrence relation -- Quadrature rules -- Classical orthogonal polynomials -- Kernel polynomials -- Sobolev orthogonal polynomials -- Orthogonal polynomials on the semicircle -- Notes to Chapter 1 -- Computational methods: Moment-based methods -- Discretization methods -- Computing Cauchy integrals of orthogonal polynomials -- Modification algorithms -- Computing Sobolev orthogonal polynomials -- Notes to Chapter 2 -- Applications: Quadrature -- Least squares approximation -- Moment-preserving spline approximation -- Slowly convergent series -- Notes to Chapter 3. Print version record. Orthogonal polynomials are a widely used class of mathematical functions that are helpful in the solution of many important technical problems. This book provides, for the first time, a systematic development of computational techniques, including a suite of computer programs in Matlab downloadable from the Internet, to generate orthogonal polynomials of a great variety. English. Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Orthogonal polynomials fast Orthogonale reeksen. gtt has work: Orthogonal polynomials (Text) https://id.oclc.org/worldcat/entity/E39PCGGJFjc4FKCpCbCKgdrDv3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Gautschi, Walter. Orthogonal polynomials. Oxford ; New York : Oxford University Press, 2004 0198506724 (DLC) 2004556094 (OCoLC)55622265 Numerical mathematics and scientific computation. http://id.loc.gov/authorities/names/nr95041471 Oxford science publications. http://id.loc.gov/authorities/names/n42027424 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=159383 Volltext |
spellingShingle | Gautschi, Walter, 1927- Orthogonal polynomials : computation and approximation / Numerical mathematics and scientific computation. Oxford science publications. Basic theory: Orthogonal polynomials -- Properties of orthogonal polynomials -- Three-term recurrence relation -- Quadrature rules -- Classical orthogonal polynomials -- Kernel polynomials -- Sobolev orthogonal polynomials -- Orthogonal polynomials on the semicircle -- Notes to Chapter 1 -- Computational methods: Moment-based methods -- Discretization methods -- Computing Cauchy integrals of orthogonal polynomials -- Modification algorithms -- Computing Sobolev orthogonal polynomials -- Notes to Chapter 2 -- Applications: Quadrature -- Least squares approximation -- Moment-preserving spline approximation -- Slowly convergent series -- Notes to Chapter 3. Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Orthogonal polynomials fast Orthogonale reeksen. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85095794 |
title | Orthogonal polynomials : computation and approximation / |
title_auth | Orthogonal polynomials : computation and approximation / |
title_exact_search | Orthogonal polynomials : computation and approximation / |
title_full | Orthogonal polynomials : computation and approximation / Walter Gautschi. |
title_fullStr | Orthogonal polynomials : computation and approximation / Walter Gautschi. |
title_full_unstemmed | Orthogonal polynomials : computation and approximation / Walter Gautschi. |
title_short | Orthogonal polynomials : |
title_sort | orthogonal polynomials computation and approximation |
title_sub | computation and approximation / |
topic | Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Orthogonal polynomials fast Orthogonale reeksen. gtt |
topic_facet | Orthogonal polynomials. Polynômes orthogonaux. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Orthogonal polynomials Orthogonale reeksen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=159383 |
work_keys_str_mv | AT gautschiwalter orthogonalpolynomialscomputationandapproximation |