Advances in large margin classifiers /:
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classi...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass. :
MIT Press,
©2000.
|
Schriftenreihe: | Neural information processing series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba. |
Beschreibung: | 1 online resource (vi, 412 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 389-407) and index. |
ISBN: | 9780262283977 0262283972 1423729544 9781423729549 0262292408 9780262292405 0262194481 9780262194488 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm62075949 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 051013s2000 maua ob 001 0 eng d | ||
010 | |z 00027641 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCQ |d N$T |d OCLCQ |d OCLCO |d OCLCQ |d IEEEE |d OCLCF |d NLGGC |d OCLCQ |d ESU |d VTS |d MERER |d AGLDB |d OCLCQ |d AU@ |d MITPR |d STF |d LEAUB |d M8D |d EBLCP |d SFB |d OCLCO |d LUN |d VT2 |d OCLCO |d N$T |d OCL |d OCLCQ |d COA |d INARC |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 1058088005 |a 1086463123 |a 1163757917 |a 1170674435 |a 1171818211 |a 1286910248 |a 1340074670 | ||
020 | |a 9780262283977 |q (electronic bk.) | ||
020 | |a 0262283972 |q (electronic bk.) | ||
020 | |a 1423729544 | ||
020 | |a 9781423729549 | ||
020 | |a 0262292408 | ||
020 | |a 9780262292405 | ||
020 | |a 0262194481 | ||
020 | |a 9780262194488 | ||
020 | |z 9780262194488 |q (print) | ||
024 | 8 | |a (WaSeSS)ssj0000098865 | |
035 | |a (OCoLC)62075949 |z (OCoLC)1058088005 |z (OCoLC)1086463123 |z (OCoLC)1163757917 |z (OCoLC)1170674435 |z (OCoLC)1171818211 |z (OCoLC)1286910248 |z (OCoLC)1340074670 | ||
037 | |a 1113 |b MIT Press | ||
037 | |a 9780262283977 |b MIT Press | ||
050 | 4 | |a Q325.5 |b .A34 2000eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advances in large margin classifiers / |c edited by Alexander J. Smola [and others]. |
260 | |a Cambridge, Mass. : |b MIT Press, |c ©2000. | ||
300 | |a 1 online resource (vi, 412 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rdaft | ||
490 | 1 | |a Advances in neural information processing systems [i.e. Neural information processing series] | |
504 | |a Includes bibliographical references (pages 389-407) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba. | ||
546 | |a English. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a Algorithms. |0 http://id.loc.gov/authorities/subjects/sh85003487 | |
650 | 0 | |a Kernel functions. |0 http://id.loc.gov/authorities/subjects/sh85072061 | |
650 | 0 | |a Computer algorithms. |0 http://id.loc.gov/authorities/subjects/sh91000149 | |
650 | 2 | |a Algorithms |0 https://id.nlm.nih.gov/mesh/D000465 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a Algorithmes. | |
650 | 6 | |a Noyaux (Mathématiques) | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Computer algorithms |2 fast | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Kernel functions |2 fast | |
650 | 7 | |a Machine learning |2 fast | |
653 | |a COMPUTER SCIENCE/General | ||
700 | 1 | |a Smola, Alexander J. | |
776 | 0 | 8 | |i Print version: |t Advances in large margin classifiers. |d Cambridge, Mass. : MIT Press, ©2000 |z 0262194481 |w (DLC) 00027641 |w (OCoLC)43561865 |
830 | 0 | |a Neural information processing series. |0 http://id.loc.gov/authorities/names/n00009051 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138583 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28810998 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5966303 | ||
938 | |a EBSCOhost |b EBSC |n 138583 | ||
938 | |a YBP Library Services |b YANK |n 3411308 | ||
938 | |a YBP Library Services |b YANK |n 2363936 | ||
938 | |a Internet Archive |b INAR |n advancesinlargem0000unse | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm62075949 |
---|---|
_version_ | 1816881630885707776 |
adam_text | |
any_adam_object | |
author2 | Smola, Alexander J. |
author2_role | |
author2_variant | a j s aj ajs |
author_facet | Smola, Alexander J. |
author_sort | Smola, Alexander J. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 .A34 2000eb |
callnumber-search | Q325.5 .A34 2000eb |
callnumber-sort | Q 3325.5 A34 42000EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)62075949 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04559cam a22008294a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm62075949 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">051013s2000 maua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 00027641 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ESU</subfield><subfield code="d">VTS</subfield><subfield code="d">MERER</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">MITPR</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">EBLCP</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">LUN</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COA</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1058088005</subfield><subfield code="a">1086463123</subfield><subfield code="a">1163757917</subfield><subfield code="a">1170674435</subfield><subfield code="a">1171818211</subfield><subfield code="a">1286910248</subfield><subfield code="a">1340074670</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262283977</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262283972</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1423729544</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781423729549</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262292408</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262292405</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262194481</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262194488</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780262194488</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">(WaSeSS)ssj0000098865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)62075949</subfield><subfield code="z">(OCoLC)1058088005</subfield><subfield code="z">(OCoLC)1086463123</subfield><subfield code="z">(OCoLC)1163757917</subfield><subfield code="z">(OCoLC)1170674435</subfield><subfield code="z">(OCoLC)1171818211</subfield><subfield code="z">(OCoLC)1286910248</subfield><subfield code="z">(OCoLC)1340074670</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">1113</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780262283977</subfield><subfield code="b">MIT Press</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield><subfield code="b">.A34 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advances in large margin classifiers /</subfield><subfield code="c">edited by Alexander J. Smola [and others].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, Mass. :</subfield><subfield code="b">MIT Press,</subfield><subfield code="c">©2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 412 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in neural information processing systems [i.e. Neural information processing series]</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 389-407) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003487</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Kernel functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85072061</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91000149</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Algorithms</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000465</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Noyaux (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COMPUTER SCIENCE/General</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smola, Alexander J.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Advances in large margin classifiers.</subfield><subfield code="d">Cambridge, Mass. : MIT Press, ©2000</subfield><subfield code="z">0262194481</subfield><subfield code="w">(DLC) 00027641</subfield><subfield code="w">(OCoLC)43561865</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Neural information processing series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00009051</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138583</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28810998</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5966303</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">138583</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3411308</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2363936</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">advancesinlargem0000unse</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm62075949 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:47Z |
institution | BVB |
isbn | 9780262283977 0262283972 1423729544 9781423729549 0262292408 9780262292405 0262194481 9780262194488 |
language | English |
oclc_num | 62075949 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 412 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | MIT Press, |
record_format | marc |
series | Neural information processing series. |
series2 | Advances in neural information processing systems [i.e. Neural information processing series] |
spelling | Advances in large margin classifiers / edited by Alexander J. Smola [and others]. Cambridge, Mass. : MIT Press, ©2000. 1 online resource (vi, 412 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rdaft Advances in neural information processing systems [i.e. Neural information processing series] Includes bibliographical references (pages 389-407) and index. Print version record. The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba. English. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Algorithms https://id.nlm.nih.gov/mesh/D000465 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Computer algorithms fast Algorithms fast Kernel functions fast Machine learning fast COMPUTER SCIENCE/General Smola, Alexander J. Print version: Advances in large margin classifiers. Cambridge, Mass. : MIT Press, ©2000 0262194481 (DLC) 00027641 (OCoLC)43561865 Neural information processing series. http://id.loc.gov/authorities/names/n00009051 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138583 Volltext |
spellingShingle | Advances in large margin classifiers / Neural information processing series. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Algorithms https://id.nlm.nih.gov/mesh/D000465 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Computer algorithms fast Algorithms fast Kernel functions fast Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh85003487 http://id.loc.gov/authorities/subjects/sh85072061 http://id.loc.gov/authorities/subjects/sh91000149 https://id.nlm.nih.gov/mesh/D000465 https://id.nlm.nih.gov/mesh/D000069550 |
title | Advances in large margin classifiers / |
title_auth | Advances in large margin classifiers / |
title_exact_search | Advances in large margin classifiers / |
title_full | Advances in large margin classifiers / edited by Alexander J. Smola [and others]. |
title_fullStr | Advances in large margin classifiers / edited by Alexander J. Smola [and others]. |
title_full_unstemmed | Advances in large margin classifiers / edited by Alexander J. Smola [and others]. |
title_short | Advances in large margin classifiers / |
title_sort | advances in large margin classifiers |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Computer algorithms. http://id.loc.gov/authorities/subjects/sh91000149 Algorithms https://id.nlm.nih.gov/mesh/D000465 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. aat COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Computer algorithms fast Algorithms fast Kernel functions fast Machine learning fast |
topic_facet | Machine learning. Algorithms. Kernel functions. Computer algorithms. Algorithms Machine Learning Apprentissage automatique. Algorithmes. Noyaux (Mathématiques) algorithms. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Computer algorithms Kernel functions Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=138583 |
work_keys_str_mv | AT smolaalexanderj advancesinlargemarginclassifiers |