Scale-isometric polytopal graphs in hypercubes and cubic lattices :: polytopes in hypercubes and Zn̳ /
This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistr...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Imperial College Press,
©2004.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph. |
Beschreibung: | On t.p. "n̳" is subscript. |
Beschreibung: | 1 online resource (ix, 175 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 163-169) and index. |
ISBN: | 1423708881 9781423708889 1860945481 9781860945489 9781860944215 1860944213 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm60690987 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 050621s2004 enka ob 001 0 eng d | ||
010 | |a 2004445213 | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCQ |d OCLCA |d IDEBK |d UV0 |d DKDLA |d ADU |d E7B |d MHW |d DEBSZ |d OCLCA |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d AGLDB |d MOR |d PIFBR |d OCLCQ |d U3W |d WRM |d VTS |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d STF |d G3B |d UKAHL |d LEAUB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d INARC |d SXB | ||
019 | |a 144553510 |a 171581956 |a 228114211 |a 478334625 |a 614744843 |a 646733367 |a 722365554 |a 725957615 |a 888574647 |a 961636367 |a 962595977 |a 966246319 |a 988482758 |a 991908662 |a 1038601268 |a 1045493509 |a 1055400534 |a 1064089173 |a 1081275140 |a 1086430828 |a 1228580685 |a 1424545652 | ||
020 | |a 1423708881 |q (electronic bk.) | ||
020 | |a 9781423708889 |q (electronic bk.) | ||
020 | |a 1860945481 | ||
020 | |a 9781860945489 | ||
020 | |a 9781860944215 | ||
020 | |a 1860944213 | ||
020 | |z 1860944213 | ||
035 | |a (OCoLC)60690987 |z (OCoLC)144553510 |z (OCoLC)171581956 |z (OCoLC)228114211 |z (OCoLC)478334625 |z (OCoLC)614744843 |z (OCoLC)646733367 |z (OCoLC)722365554 |z (OCoLC)725957615 |z (OCoLC)888574647 |z (OCoLC)961636367 |z (OCoLC)962595977 |z (OCoLC)966246319 |z (OCoLC)988482758 |z (OCoLC)991908662 |z (OCoLC)1038601268 |z (OCoLC)1045493509 |z (OCoLC)1055400534 |z (OCoLC)1064089173 |z (OCoLC)1081275140 |z (OCoLC)1086430828 |z (OCoLC)1228580685 |z (OCoLC)1424545652 | ||
050 | 4 | |a QA166 |b .D489 2004eb | |
072 | 7 | |a MAT |x 013000 |2 bisacsh | |
082 | 7 | |a 511/.5 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Deza, M., |d 1939- |0 http://id.loc.gov/authorities/names/n85202710 | |
245 | 1 | 0 | |a Scale-isometric polytopal graphs in hypercubes and cubic lattices : |b polytopes in hypercubes and Zn̳ / |c Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin. |
260 | |a London : |b Imperial College Press, |c ©2004. | ||
300 | |a 1 online resource (ix, 175 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
500 | |a On t.p. "n̳" is subscript. | ||
504 | |a Includes bibliographical references (pages 163-169) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives. | |
520 | |a This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph. | ||
650 | 0 | |a Graph theory. |0 http://id.loc.gov/authorities/subjects/sh85056471 | |
650 | 0 | |a Polytopes. |0 http://id.loc.gov/authorities/subjects/sh85104738 | |
650 | 0 | |a Metric spaces. |0 http://id.loc.gov/authorities/subjects/sh85084441 | |
650 | 0 | |a Embeddings (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85042674 | |
650 | 6 | |a Polytopes. | |
650 | 6 | |a Espaces métriques. | |
650 | 6 | |a Plongements (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Graphic Methods. |2 bisacsh | |
650 | 7 | |a Embeddings (Mathematics) |2 fast | |
650 | 7 | |a Graph theory |2 fast | |
650 | 7 | |a Metric spaces |2 fast | |
650 | 7 | |a Polytopes |2 fast | |
655 | 0 | |a Elecytonic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Grishukhin, Viatcheslav. | |
700 | 1 | |a Shtogrin, Mikhail. | |
758 | |i has work: |a Scale-isometric polytopal graphs in hypercubes and cubic lattices (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFJ397Ck3M9wcB3fh3pmq3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Deza, M., 1934- |t Scale-isometric polytopal graphs in hypercubes and cubic lattices. |d London : Imperial College Press, ©2004 |z 1860944213 |w (DLC) 2004445213 |w (OCoLC)55092432 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130045 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24682938 | ||
938 | |a ebrary |b EBRY |n ebr10082155 | ||
938 | |a EBSCOhost |b EBSC |n 130045 | ||
938 | |a YBP Library Services |b YANK |n 2407338 | ||
938 | |a YBP Library Services |b YANK |n 2632382 | ||
938 | |a Internet Archive |b INAR |n scaleisometricpo0000deza | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm60690987 |
---|---|
_version_ | 1816881628114321408 |
adam_text | |
any_adam_object | |
author | Deza, M., 1939- |
author2 | Grishukhin, Viatcheslav Shtogrin, Mikhail |
author2_role | |
author2_variant | v g vg m s ms |
author_GND | http://id.loc.gov/authorities/names/n85202710 |
author_facet | Deza, M., 1939- Grishukhin, Viatcheslav Shtogrin, Mikhail |
author_role | |
author_sort | Deza, M., 1939- |
author_variant | m d md |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166 .D489 2004eb |
callnumber-search | QA166 .D489 2004eb |
callnumber-sort | QA 3166 D489 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives. |
ctrlnum | (OCoLC)60690987 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05133cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm60690987 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">050621s2004 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2004445213</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">IDEBK</subfield><subfield code="d">UV0</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">G3B</subfield><subfield code="d">UKAHL</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">INARC</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">144553510</subfield><subfield code="a">171581956</subfield><subfield code="a">228114211</subfield><subfield code="a">478334625</subfield><subfield code="a">614744843</subfield><subfield code="a">646733367</subfield><subfield code="a">722365554</subfield><subfield code="a">725957615</subfield><subfield code="a">888574647</subfield><subfield code="a">961636367</subfield><subfield code="a">962595977</subfield><subfield code="a">966246319</subfield><subfield code="a">988482758</subfield><subfield code="a">991908662</subfield><subfield code="a">1038601268</subfield><subfield code="a">1045493509</subfield><subfield code="a">1055400534</subfield><subfield code="a">1064089173</subfield><subfield code="a">1081275140</subfield><subfield code="a">1086430828</subfield><subfield code="a">1228580685</subfield><subfield code="a">1424545652</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1423708881</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781423708889</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945481</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860945489</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860944215</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860944213</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1860944213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60690987</subfield><subfield code="z">(OCoLC)144553510</subfield><subfield code="z">(OCoLC)171581956</subfield><subfield code="z">(OCoLC)228114211</subfield><subfield code="z">(OCoLC)478334625</subfield><subfield code="z">(OCoLC)614744843</subfield><subfield code="z">(OCoLC)646733367</subfield><subfield code="z">(OCoLC)722365554</subfield><subfield code="z">(OCoLC)725957615</subfield><subfield code="z">(OCoLC)888574647</subfield><subfield code="z">(OCoLC)961636367</subfield><subfield code="z">(OCoLC)962595977</subfield><subfield code="z">(OCoLC)966246319</subfield><subfield code="z">(OCoLC)988482758</subfield><subfield code="z">(OCoLC)991908662</subfield><subfield code="z">(OCoLC)1038601268</subfield><subfield code="z">(OCoLC)1045493509</subfield><subfield code="z">(OCoLC)1055400534</subfield><subfield code="z">(OCoLC)1064089173</subfield><subfield code="z">(OCoLC)1081275140</subfield><subfield code="z">(OCoLC)1086430828</subfield><subfield code="z">(OCoLC)1228580685</subfield><subfield code="z">(OCoLC)1424545652</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166</subfield><subfield code="b">.D489 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deza, M.,</subfield><subfield code="d">1939-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85202710</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scale-isometric polytopal graphs in hypercubes and cubic lattices :</subfield><subfield code="b">polytopes in hypercubes and Zn̳ /</subfield><subfield code="c">Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 175 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">On t.p. "n̳" is subscript.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 163-169) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Graph theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85056471</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polytopes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85104738</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Metric spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85084441</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Embeddings (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85042674</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polytopes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces métriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Plongements (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Graphic Methods.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Embeddings (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Graph theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metric spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polytopes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Elecytonic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grishukhin, Viatcheslav.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shtogrin, Mikhail.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Scale-isometric polytopal graphs in hypercubes and cubic lattices (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFJ397Ck3M9wcB3fh3pmq3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Deza, M., 1934-</subfield><subfield code="t">Scale-isometric polytopal graphs in hypercubes and cubic lattices.</subfield><subfield code="d">London : Imperial College Press, ©2004</subfield><subfield code="z">1860944213</subfield><subfield code="w">(DLC) 2004445213</subfield><subfield code="w">(OCoLC)55092432</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130045</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24682938</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10082155</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">130045</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2407338</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2632382</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">scaleisometricpo0000deza</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Elecytonic books. Electronic books. |
genre_facet | Elecytonic books. Electronic books. |
id | ZDB-4-EBA-ocm60690987 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:44Z |
institution | BVB |
isbn | 1423708881 9781423708889 1860945481 9781860945489 9781860944215 1860944213 |
language | English |
lccn | 2004445213 |
oclc_num | 60690987 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 175 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Imperial College Press, |
record_format | marc |
spelling | Deza, M., 1939- http://id.loc.gov/authorities/names/n85202710 Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin. London : Imperial College Press, ©2004. 1 online resource (ix, 175 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda On t.p. "n̳" is subscript. Includes bibliographical references (pages 163-169) and index. Print version record. Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives. This monograph identifies polytopes that are "combinatorially l1-embeddable", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to "l2-prominent" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph. Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Polytopes. http://id.loc.gov/authorities/subjects/sh85104738 Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Embeddings (Mathematics) http://id.loc.gov/authorities/subjects/sh85042674 Polytopes. Espaces métriques. Plongements (Mathématiques) MATHEMATICS Graphic Methods. bisacsh Embeddings (Mathematics) fast Graph theory fast Metric spaces fast Polytopes fast Elecytonic books. Electronic books. Grishukhin, Viatcheslav. Shtogrin, Mikhail. has work: Scale-isometric polytopal graphs in hypercubes and cubic lattices (Text) https://id.oclc.org/worldcat/entity/E39PCFJ397Ck3M9wcB3fh3pmq3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Deza, M., 1934- Scale-isometric polytopal graphs in hypercubes and cubic lattices. London : Imperial College Press, ©2004 1860944213 (DLC) 2004445213 (OCoLC)55092432 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130045 Volltext |
spellingShingle | Deza, M., 1939- Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives. Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Polytopes. http://id.loc.gov/authorities/subjects/sh85104738 Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Embeddings (Mathematics) http://id.loc.gov/authorities/subjects/sh85042674 Polytopes. Espaces métriques. Plongements (Mathématiques) MATHEMATICS Graphic Methods. bisacsh Embeddings (Mathematics) fast Graph theory fast Metric spaces fast Polytopes fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85056471 http://id.loc.gov/authorities/subjects/sh85104738 http://id.loc.gov/authorities/subjects/sh85084441 http://id.loc.gov/authorities/subjects/sh85042674 |
title | Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / |
title_auth | Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / |
title_exact_search | Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / |
title_full | Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin. |
title_fullStr | Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin. |
title_full_unstemmed | Scale-isometric polytopal graphs in hypercubes and cubic lattices : polytopes in hypercubes and Zn̳ / Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin. |
title_short | Scale-isometric polytopal graphs in hypercubes and cubic lattices : |
title_sort | scale isometric polytopal graphs in hypercubes and cubic lattices polytopes in hypercubes and zn |
title_sub | polytopes in hypercubes and Zn̳ / |
topic | Graph theory. http://id.loc.gov/authorities/subjects/sh85056471 Polytopes. http://id.loc.gov/authorities/subjects/sh85104738 Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Embeddings (Mathematics) http://id.loc.gov/authorities/subjects/sh85042674 Polytopes. Espaces métriques. Plongements (Mathématiques) MATHEMATICS Graphic Methods. bisacsh Embeddings (Mathematics) fast Graph theory fast Metric spaces fast Polytopes fast |
topic_facet | Graph theory. Polytopes. Metric spaces. Embeddings (Mathematics) Espaces métriques. Plongements (Mathématiques) MATHEMATICS Graphic Methods. Graph theory Metric spaces Polytopes Elecytonic books. Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130045 |
work_keys_str_mv | AT dezam scaleisometricpolytopalgraphsinhypercubesandcubiclatticespolytopesinhypercubesandzn AT grishukhinviatcheslav scaleisometricpolytopalgraphsinhypercubesandcubiclatticespolytopesinhypercubesandzn AT shtogrinmikhail scaleisometricpolytopalgraphsinhypercubesandcubiclatticespolytopesinhypercubesandzn |