Perturbation of the boundary in boundary-value problems of partial differential equations /:
Perturbation of the boundary is a rather neglected topic in the study of PDEs for two main reasons. First, on the surface it appears trivial, merely a change of variables and an application of the chain rule. Second, carrying out such a change of variables frequently results in long and difficult ca...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2005.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
318. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Perturbation of the boundary is a rather neglected topic in the study of PDEs for two main reasons. First, on the surface it appears trivial, merely a change of variables and an application of the chain rule. Second, carrying out such a change of variables frequently results in long and difficult calculations. Here the author carefully discusses a calculus that allows the computational morass to be bypassed, and he goes on to develop more general forms of standard theorems, which help answer a wide range of problems involving boundary perturbations. Many examples are presented to demonstrate the usefulness of the author's approach, while on the other hand many tantalizing open questions remain. Anyone whose research involves PDEs will find something of interest in this book. |
Beschreibung: | 1 online resource (1 volume) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 051111317X 9780511113178 9780511546730 0511546734 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm60653235 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 050616s2005 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d AU@ |d E7B |d OCLCQ |d IDEBK |d TUU |d OCLCQ |d REDDC |d OCLCQ |d CAMBR |d OL$ |d OCLCO |d OCLCQ |d SLY |d OCLCF |d OCLCQ |d WY@ |d COO |d LUE |d EBLCP |d STF |d OCLCQ |d OCLCO |d OCLCQ |d S8J |d OCLCO |d K6U |d OCLCQ |d UKAHL |d OCLCO |d ANO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 271790010 |a 813436719 |a 814387975 |a 819633230 |a 824547222 |a 846897976 |a 880334815 | ||
020 | |a 051111317X |q (electronic bk.) | ||
020 | |a 9780511113178 |q (electronic bk.) | ||
020 | |a 9780511546730 |q (electronic bk.) | ||
020 | |a 0511546734 |q (electronic bk.) | ||
020 | |z 0521574919 |q (Paper) | ||
020 | |z 9780521574914 | ||
020 | |z 128041491X | ||
020 | |z 9781280414916 | ||
035 | |a (OCoLC)60653235 |z (OCoLC)271790010 |z (OCoLC)813436719 |z (OCoLC)814387975 |z (OCoLC)819633230 |z (OCoLC)824547222 |z (OCoLC)846897976 |z (OCoLC)880334815 | ||
050 | 4 | |a QA379 |b .H46 2005eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
072 | 7 | |a PBKJ |2 bicssc | |
082 | 7 | |a 515/.353 |2 22 | |
084 | |a 31.45 |2 bcl | ||
084 | |a O175. 8 |2 clc | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 540 |2 rvk | ||
084 | |a MAT 418f |2 stub | ||
084 | |a MAT 350f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Henry, Dan. | |
245 | 1 | 0 | |a Perturbation of the boundary in boundary-value problems of partial differential equations / |c D. Henry ; with editorial assistance from Jack Hale and Antônio Luiz Pereira. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2005. | ||
300 | |a 1 online resource (1 volume) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 318 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Geometrical preliminaries -- Differential calculus of boundary perturbations -- Examples using the implicit function theorem -- Bifurcation problems -- The tranversality theorem -- Generic perturbation of the boundary -- Boundary operators for second-order elliptic equations -- The method of rapidly-oscillating solutions. | |
520 | |a Perturbation of the boundary is a rather neglected topic in the study of PDEs for two main reasons. First, on the surface it appears trivial, merely a change of variables and an application of the chain rule. Second, carrying out such a change of variables frequently results in long and difficult calculations. Here the author carefully discusses a calculus that allows the computational morass to be bypassed, and he goes on to develop more general forms of standard theorems, which help answer a wide range of problems involving boundary perturbations. Many examples are presented to demonstrate the usefulness of the author's approach, while on the other hand many tantalizing open questions remain. Anyone whose research involves PDEs will find something of interest in this book. | ||
650 | 0 | |a Boundary value problems. |0 http://id.loc.gov/authorities/subjects/sh85016102 | |
650 | 0 | |a Perturbation (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85100181 | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 6 | |a Problèmes aux limites. | |
650 | 6 | |a Perturbation (Mathématiques) | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 0 | 7 | |a Perturbation (Mathematics) |2 cct |
650 | 0 | 7 | |a Differential equations, Partial. |2 cct |
650 | 0 | 7 | |a Boundary value problems. |2 cct |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Perturbation (Mathematics) |2 fast | |
650 | 7 | |a Partielle Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4044779-0 | |
650 | 7 | |a Randwertproblem |2 gnd |0 http://d-nb.info/gnd/4048395-2 | |
650 | 7 | |a Störungstheorie |2 gnd |0 http://d-nb.info/gnd/4128420-3 | |
650 | 7 | |a Equações diferenciais parciais. |2 larpcal | |
650 | 7 | |a Problèmes aux limites. |2 ram | |
650 | 7 | |a Perturbation (mathématiques) |2 ram | |
650 | 7 | |a Équations aux dérivées partielles. |2 ram | |
700 | 1 | |a Hale, Jack. |0 http://id.loc.gov/authorities/names/n91121018 | |
700 | 1 | |a Pereira, Antônio. |0 http://id.loc.gov/authorities/names/n93900349 | |
758 | |i has work: |a Perturbation of the boundary in boundary-value problems of partial differential equations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGphmjRJBCkxYpY4mXD8qP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Henry, Dan. |t Perturbation of the boundary in boundary-value problems of partial differential equations. |d Cambridge, UK ; New York : Cambridge University Press, 2005 |z 0521574919 |w (DLC) 2004054767 |w (OCoLC)55887397 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 318. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=132320 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13423243 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4949549 | ||
938 | |a ebrary |b EBRY |n ebr10429110 | ||
938 | |a EBSCOhost |b EBSC |n 132320 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 41491 | ||
938 | |a YBP Library Services |b YANK |n 2301780 | ||
938 | |a YBP Library Services |b YANK |n 3276224 | ||
938 | |a YBP Library Services |b YANK |n 7036574 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm60653235 |
---|---|
_version_ | 1816881627991638016 |
adam_text | |
any_adam_object | |
author | Henry, Dan |
author2 | Hale, Jack Pereira, Antônio |
author2_role | |
author2_variant | j h jh a p ap |
author_GND | http://id.loc.gov/authorities/names/n91121018 http://id.loc.gov/authorities/names/n93900349 |
author_facet | Henry, Dan Hale, Jack Pereira, Antônio |
author_role | |
author_sort | Henry, Dan |
author_variant | d h dh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA379 |
callnumber-raw | QA379 .H46 2005eb |
callnumber-search | QA379 .H46 2005eb |
callnumber-sort | QA 3379 H46 42005EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 540 |
classification_tum | MAT 418f MAT 350f |
collection | ZDB-4-EBA |
contents | Geometrical preliminaries -- Differential calculus of boundary perturbations -- Examples using the implicit function theorem -- Bifurcation problems -- The tranversality theorem -- Generic perturbation of the boundary -- Boundary operators for second-order elliptic equations -- The method of rapidly-oscillating solutions. |
ctrlnum | (OCoLC)60653235 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05700cam a2200925 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm60653235 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">050616s2005 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SLY</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">COO</subfield><subfield code="d">LUE</subfield><subfield code="d">EBLCP</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S8J</subfield><subfield code="d">OCLCO</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">ANO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">271790010</subfield><subfield code="a">813436719</subfield><subfield code="a">814387975</subfield><subfield code="a">819633230</subfield><subfield code="a">824547222</subfield><subfield code="a">846897976</subfield><subfield code="a">880334815</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051111317X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511113178</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546730</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511546734</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521574919</subfield><subfield code="q">(Paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521574914</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">128041491X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781280414916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60653235</subfield><subfield code="z">(OCoLC)271790010</subfield><subfield code="z">(OCoLC)813436719</subfield><subfield code="z">(OCoLC)814387975</subfield><subfield code="z">(OCoLC)819633230</subfield><subfield code="z">(OCoLC)824547222</subfield><subfield code="z">(OCoLC)846897976</subfield><subfield code="z">(OCoLC)880334815</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA379</subfield><subfield code="b">.H46 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKJ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">O175. 8</subfield><subfield code="2">clc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 418f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Henry, Dan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perturbation of the boundary in boundary-value problems of partial differential equations /</subfield><subfield code="c">D. Henry ; with editorial assistance from Jack Hale and Antônio Luiz Pereira.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">318</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Geometrical preliminaries -- Differential calculus of boundary perturbations -- Examples using the implicit function theorem -- Bifurcation problems -- The tranversality theorem -- Generic perturbation of the boundary -- Boundary operators for second-order elliptic equations -- The method of rapidly-oscillating solutions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Perturbation of the boundary is a rather neglected topic in the study of PDEs for two main reasons. First, on the surface it appears trivial, merely a change of variables and an application of the chain rule. Second, carrying out such a change of variables frequently results in long and difficult calculations. Here the author carefully discusses a calculus that allows the computational morass to be bypassed, and he goes on to develop more general forms of standard theorems, which help answer a wide range of problems involving boundary perturbations. Many examples are presented to demonstrate the usefulness of the author's approach, while on the other hand many tantalizing open questions remain. Anyone whose research involves PDEs will find something of interest in this book.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Boundary value problems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85016102</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Perturbation (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85100181</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes aux limites.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Perturbation (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Perturbation (Mathematics)</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differential equations, Partial.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boundary value problems.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perturbation (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4044779-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4048395-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128420-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equações diferenciais parciais.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Problèmes aux limites.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perturbation (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Équations aux dérivées partielles.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hale, Jack.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91121018</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pereira, Antônio.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93900349</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Perturbation of the boundary in boundary-value problems of partial differential equations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGphmjRJBCkxYpY4mXD8qP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Henry, Dan.</subfield><subfield code="t">Perturbation of the boundary in boundary-value problems of partial differential equations.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2005</subfield><subfield code="z">0521574919</subfield><subfield code="w">(DLC) 2004054767</subfield><subfield code="w">(OCoLC)55887397</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">318.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=132320</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13423243</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4949549</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10429110</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">132320</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">41491</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2301780</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3276224</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7036574</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm60653235 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:15:44Z |
institution | BVB |
isbn | 051111317X 9780511113178 9780511546730 0511546734 |
language | English |
oclc_num | 60653235 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Henry, Dan. Perturbation of the boundary in boundary-value problems of partial differential equations / D. Henry ; with editorial assistance from Jack Hale and Antônio Luiz Pereira. Cambridge, UK ; New York : Cambridge University Press, 2005. 1 online resource (1 volume) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 318 Includes bibliographical references and index. Print version record. Geometrical preliminaries -- Differential calculus of boundary perturbations -- Examples using the implicit function theorem -- Bifurcation problems -- The tranversality theorem -- Generic perturbation of the boundary -- Boundary operators for second-order elliptic equations -- The method of rapidly-oscillating solutions. Perturbation of the boundary is a rather neglected topic in the study of PDEs for two main reasons. First, on the surface it appears trivial, merely a change of variables and an application of the chain rule. Second, carrying out such a change of variables frequently results in long and difficult calculations. Here the author carefully discusses a calculus that allows the computational morass to be bypassed, and he goes on to develop more general forms of standard theorems, which help answer a wide range of problems involving boundary perturbations. Many examples are presented to demonstrate the usefulness of the author's approach, while on the other hand many tantalizing open questions remain. Anyone whose research involves PDEs will find something of interest in this book. Boundary value problems. http://id.loc.gov/authorities/subjects/sh85016102 Perturbation (Mathematics) http://id.loc.gov/authorities/subjects/sh85100181 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Problèmes aux limites. Perturbation (Mathématiques) Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. bisacsh Perturbation (Mathematics) cct Differential equations, Partial. cct Boundary value problems. cct Boundary value problems fast Differential equations, Partial fast Perturbation (Mathematics) fast Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Störungstheorie gnd http://d-nb.info/gnd/4128420-3 Equações diferenciais parciais. larpcal Problèmes aux limites. ram Perturbation (mathématiques) ram Équations aux dérivées partielles. ram Hale, Jack. http://id.loc.gov/authorities/names/n91121018 Pereira, Antônio. http://id.loc.gov/authorities/names/n93900349 has work: Perturbation of the boundary in boundary-value problems of partial differential equations (Text) https://id.oclc.org/worldcat/entity/E39PCGphmjRJBCkxYpY4mXD8qP https://id.oclc.org/worldcat/ontology/hasWork Print version: Henry, Dan. Perturbation of the boundary in boundary-value problems of partial differential equations. Cambridge, UK ; New York : Cambridge University Press, 2005 0521574919 (DLC) 2004054767 (OCoLC)55887397 London Mathematical Society lecture note series ; 318. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=132320 Volltext |
spellingShingle | Henry, Dan Perturbation of the boundary in boundary-value problems of partial differential equations / London Mathematical Society lecture note series ; Geometrical preliminaries -- Differential calculus of boundary perturbations -- Examples using the implicit function theorem -- Bifurcation problems -- The tranversality theorem -- Generic perturbation of the boundary -- Boundary operators for second-order elliptic equations -- The method of rapidly-oscillating solutions. Boundary value problems. http://id.loc.gov/authorities/subjects/sh85016102 Perturbation (Mathematics) http://id.loc.gov/authorities/subjects/sh85100181 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Problèmes aux limites. Perturbation (Mathématiques) Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. bisacsh Perturbation (Mathematics) cct Differential equations, Partial. cct Boundary value problems. cct Boundary value problems fast Differential equations, Partial fast Perturbation (Mathematics) fast Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Störungstheorie gnd http://d-nb.info/gnd/4128420-3 Equações diferenciais parciais. larpcal Problèmes aux limites. ram Perturbation (mathématiques) ram Équations aux dérivées partielles. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85016102 http://id.loc.gov/authorities/subjects/sh85100181 http://id.loc.gov/authorities/subjects/sh85037912 http://d-nb.info/gnd/4044779-0 http://d-nb.info/gnd/4048395-2 http://d-nb.info/gnd/4128420-3 |
title | Perturbation of the boundary in boundary-value problems of partial differential equations / |
title_auth | Perturbation of the boundary in boundary-value problems of partial differential equations / |
title_exact_search | Perturbation of the boundary in boundary-value problems of partial differential equations / |
title_full | Perturbation of the boundary in boundary-value problems of partial differential equations / D. Henry ; with editorial assistance from Jack Hale and Antônio Luiz Pereira. |
title_fullStr | Perturbation of the boundary in boundary-value problems of partial differential equations / D. Henry ; with editorial assistance from Jack Hale and Antônio Luiz Pereira. |
title_full_unstemmed | Perturbation of the boundary in boundary-value problems of partial differential equations / D. Henry ; with editorial assistance from Jack Hale and Antônio Luiz Pereira. |
title_short | Perturbation of the boundary in boundary-value problems of partial differential equations / |
title_sort | perturbation of the boundary in boundary value problems of partial differential equations |
topic | Boundary value problems. http://id.loc.gov/authorities/subjects/sh85016102 Perturbation (Mathematics) http://id.loc.gov/authorities/subjects/sh85100181 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Problèmes aux limites. Perturbation (Mathématiques) Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. bisacsh Perturbation (Mathematics) cct Differential equations, Partial. cct Boundary value problems. cct Boundary value problems fast Differential equations, Partial fast Perturbation (Mathematics) fast Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Störungstheorie gnd http://d-nb.info/gnd/4128420-3 Equações diferenciais parciais. larpcal Problèmes aux limites. ram Perturbation (mathématiques) ram Équations aux dérivées partielles. ram |
topic_facet | Boundary value problems. Perturbation (Mathematics) Differential equations, Partial. Problèmes aux limites. Perturbation (Mathématiques) Équations aux dérivées partielles. MATHEMATICS Differential Equations Partial. Boundary value problems Differential equations, Partial Partielle Differentialgleichung Randwertproblem Störungstheorie Equações diferenciais parciais. Perturbation (mathématiques) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=132320 |
work_keys_str_mv | AT henrydan perturbationoftheboundaryinboundaryvalueproblemsofpartialdifferentialequations AT halejack perturbationoftheboundaryinboundaryvalueproblemsofpartialdifferentialequations AT pereiraantonio perturbationoftheboundaryinboundaryvalueproblemsofpartialdifferentialequations |