Iterated integrals and cycles on algebraic manifolds /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, NJ :
World Scientific,
©2004.
|
Schriftenreihe: | Nankai tracts in mathematics ;
v. 7. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | "Part of this book describes some of the work of Kuo-Tsai Chen on iterated integrals and the fundamental group of a manifold ... Based on a course by the author at the Nankai Institute of Mathematics in the fall of 2001"--Page 4 of cover |
Beschreibung: | 1 online resource (xii, 108) : illustrations |
Bibliographie: | Includes bibliographical references (pages 101-102) and index. |
ISBN: | 9812562575 9789812562579 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm60410456 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 050520s2004 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d DKDLA |d NLGGC |d OCLCQ |d UV0 |d ADU |d E7B |d SLY |d STF |d OCLCQ |d AZK |d COCUF |d MOR |d IQW |d PIFBR |d X#7 |d OCLCQ |d WRM |d VTS |d NRAMU |d AGLDB |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d G3B |d LEAUB |d UKAHL |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
019 | |a 228114412 |a 475717857 |a 488557178 |a 614757913 |a 646733392 |a 722365759 |a 880334524 |a 888762428 |a 961673465 |a 962601904 |a 988538182 |a 992027063 |a 1037754861 |a 1038564927 |a 1045515173 |a 1153495108 | ||
020 | |a 9812562575 |q (electronic bk.) | ||
020 | |a 9789812562579 |q (electronic bk.) | ||
020 | |z 981238720X | ||
035 | |a (OCoLC)60410456 |z (OCoLC)228114412 |z (OCoLC)475717857 |z (OCoLC)488557178 |z (OCoLC)614757913 |z (OCoLC)646733392 |z (OCoLC)722365759 |z (OCoLC)880334524 |z (OCoLC)888762428 |z (OCoLC)961673465 |z (OCoLC)962601904 |z (OCoLC)988538182 |z (OCoLC)992027063 |z (OCoLC)1037754861 |z (OCoLC)1038564927 |z (OCoLC)1045515173 |z (OCoLC)1153495108 | ||
050 | 4 | |a QA311 |b .H377 2004eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.43 |2 22 | |
084 | |a O172. 2 |2 clc | ||
049 | |a MAIN | ||
100 | 1 | |a Harris, Bruno. | |
245 | 1 | 0 | |a Iterated integrals and cycles on algebraic manifolds / |c Bruno Harris. |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c ©2004. | ||
300 | |a 1 online resource (xii, 108) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Nankai tracts in mathematics ; |v v. 7 | |
500 | |a "Part of this book describes some of the work of Kuo-Tsai Chen on iterated integrals and the fundamental group of a manifold ... Based on a course by the author at the Nankai Institute of Mathematics in the fall of 2001"--Page 4 of cover | ||
504 | |a Includes bibliographical references (pages 101-102) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Iterated integrals, Chen's flat connection and ~1 -- Iterated integrals on compact Riemann surfaces -- The generalized linking pairing and the heat kernel. | |
650 | 0 | |a Integrals. |0 http://id.loc.gov/authorities/subjects/sh85067099 | |
650 | 0 | |a Algebraic cycles. |0 http://id.loc.gov/authorities/subjects/sh85035063 | |
650 | 0 | |a Algebraic number theory. |0 http://id.loc.gov/authorities/subjects/sh85003436 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 0 | |a Geometry, Algebraic. |0 http://id.loc.gov/authorities/subjects/sh85054140 | |
650 | 6 | |a Intégrales. | |
650 | 6 | |a Cycles algébriques. | |
650 | 6 | |a Théorie algébrique des nombres. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 6 | |a Géométrie algébrique. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 0 | 7 | |a Algebraic cycles. |2 cct |
650 | 0 | 7 | |a Algebraic number theory. |2 cct |
650 | 0 | 7 | |a Manifolds (Mathematics) |2 cct |
650 | 0 | 7 | |a Geometry, Algebraic. |2 cct |
650 | 0 | 7 | |a Integrals. |2 cct |
650 | 7 | |a Algebraic cycles |2 fast | |
650 | 7 | |a Algebraic number theory |2 fast | |
650 | 7 | |a Geometry, Algebraic |2 fast | |
650 | 7 | |a Integrals |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
653 | |a Andre fag (naturvidenskab og teknik) |a Andre fag | ||
700 | 1 | |a Chen, K.-T. |q (Kuo-Tsai), |d 1923-1987. |1 https://id.oclc.org/worldcat/entity/E39PBJdmpGrCr489BQ73VjHDMP |0 http://id.loc.gov/authorities/names/n00047159 | |
758 | |i has work: |a Iterated integrals and cycles on algebraic manifolds (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFw3qHmWDmd4c6jd7b66PP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Harris, Bruno. |t Iterated integrals and cycles on algebraic manifolds. |d Singapore ; River Edge, NJ : World Scientific, ©2004 |z 981238720X |w (OCoLC)55990946 |
830 | 0 | |a Nankai tracts in mathematics ; |v v. 7. |0 http://id.loc.gov/authorities/names/n2001000055 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130042 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH21190576 | ||
938 | |a ebrary |b EBRY |n ebr10082173 | ||
938 | |a EBSCOhost |b EBSC |n 130042 | ||
938 | |a YBP Library Services |b YANK |n 2405944 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm60410456 |
---|---|
_version_ | 1816881627548090368 |
adam_text | |
any_adam_object | |
author | Harris, Bruno |
author2 | Chen, K.-T. (Kuo-Tsai), 1923-1987 |
author2_role | |
author2_variant | k t c ktc |
author_GND | http://id.loc.gov/authorities/names/n00047159 |
author_facet | Harris, Bruno Chen, K.-T. (Kuo-Tsai), 1923-1987 |
author_role | |
author_sort | Harris, Bruno |
author_variant | b h bh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA311 |
callnumber-raw | QA311 .H377 2004eb |
callnumber-search | QA311 .H377 2004eb |
callnumber-sort | QA 3311 H377 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Iterated integrals, Chen's flat connection and ~1 -- Iterated integrals on compact Riemann surfaces -- The generalized linking pairing and the heat kernel. |
ctrlnum | (OCoLC)60410456 |
dewey-full | 515.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.43 |
dewey-search | 515.43 |
dewey-sort | 3515.43 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04541cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm60410456 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">050520s2004 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UV0</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">SLY</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">IQW</subfield><subfield code="d">PIFBR</subfield><subfield code="d">X#7</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">228114412</subfield><subfield code="a">475717857</subfield><subfield code="a">488557178</subfield><subfield code="a">614757913</subfield><subfield code="a">646733392</subfield><subfield code="a">722365759</subfield><subfield code="a">880334524</subfield><subfield code="a">888762428</subfield><subfield code="a">961673465</subfield><subfield code="a">962601904</subfield><subfield code="a">988538182</subfield><subfield code="a">992027063</subfield><subfield code="a">1037754861</subfield><subfield code="a">1038564927</subfield><subfield code="a">1045515173</subfield><subfield code="a">1153495108</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812562575</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812562579</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">981238720X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60410456</subfield><subfield code="z">(OCoLC)228114412</subfield><subfield code="z">(OCoLC)475717857</subfield><subfield code="z">(OCoLC)488557178</subfield><subfield code="z">(OCoLC)614757913</subfield><subfield code="z">(OCoLC)646733392</subfield><subfield code="z">(OCoLC)722365759</subfield><subfield code="z">(OCoLC)880334524</subfield><subfield code="z">(OCoLC)888762428</subfield><subfield code="z">(OCoLC)961673465</subfield><subfield code="z">(OCoLC)962601904</subfield><subfield code="z">(OCoLC)988538182</subfield><subfield code="z">(OCoLC)992027063</subfield><subfield code="z">(OCoLC)1037754861</subfield><subfield code="z">(OCoLC)1038564927</subfield><subfield code="z">(OCoLC)1045515173</subfield><subfield code="z">(OCoLC)1153495108</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA311</subfield><subfield code="b">.H377 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">O172. 2</subfield><subfield code="2">clc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harris, Bruno.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterated integrals and cycles on algebraic manifolds /</subfield><subfield code="c">Bruno Harris.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 108) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nankai tracts in mathematics ;</subfield><subfield code="v">v. 7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Part of this book describes some of the work of Kuo-Tsai Chen on iterated integrals and the fundamental group of a manifold ... Based on a course by the author at the Nankai Institute of Mathematics in the fall of 2001"--Page 4 of cover</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 101-102) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Iterated integrals, Chen's flat connection and ~1 -- Iterated integrals on compact Riemann surfaces -- The generalized linking pairing and the heat kernel.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integrals.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067099</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic cycles.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85035063</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003436</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Algebraic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054140</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégrales.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Cycles algébriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie algébrique des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraic cycles.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraic number theory.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometry, Algebraic.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrals.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic cycles</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Algebraic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integrals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Andre fag (naturvidenskab og teknik)</subfield><subfield code="a">Andre fag</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, K.-T.</subfield><subfield code="q">(Kuo-Tsai),</subfield><subfield code="d">1923-1987.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdmpGrCr489BQ73VjHDMP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00047159</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Iterated integrals and cycles on algebraic manifolds (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFw3qHmWDmd4c6jd7b66PP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Harris, Bruno.</subfield><subfield code="t">Iterated integrals and cycles on algebraic manifolds.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, ©2004</subfield><subfield code="z">981238720X</subfield><subfield code="w">(OCoLC)55990946</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nankai tracts in mathematics ;</subfield><subfield code="v">v. 7.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001000055</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130042</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21190576</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10082173</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">130042</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2405944</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm60410456 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:44Z |
institution | BVB |
isbn | 9812562575 9789812562579 |
language | English |
oclc_num | 60410456 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 108) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific, |
record_format | marc |
series | Nankai tracts in mathematics ; |
series2 | Nankai tracts in mathematics ; |
spelling | Harris, Bruno. Iterated integrals and cycles on algebraic manifolds / Bruno Harris. Singapore ; River Edge, NJ : World Scientific, ©2004. 1 online resource (xii, 108) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Nankai tracts in mathematics ; v. 7 "Part of this book describes some of the work of Kuo-Tsai Chen on iterated integrals and the fundamental group of a manifold ... Based on a course by the author at the Nankai Institute of Mathematics in the fall of 2001"--Page 4 of cover Includes bibliographical references (pages 101-102) and index. Print version record. Iterated integrals, Chen's flat connection and ~1 -- Iterated integrals on compact Riemann surfaces -- The generalized linking pairing and the heat kernel. Integrals. http://id.loc.gov/authorities/subjects/sh85067099 Algebraic cycles. http://id.loc.gov/authorities/subjects/sh85035063 Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Intégrales. Cycles algébriques. Théorie algébrique des nombres. Variétés (Mathématiques) Géométrie algébrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Algebraic cycles. cct Algebraic number theory. cct Manifolds (Mathematics) cct Geometry, Algebraic. cct Integrals. cct Algebraic cycles fast Algebraic number theory fast Geometry, Algebraic fast Integrals fast Manifolds (Mathematics) fast Andre fag (naturvidenskab og teknik) Andre fag Chen, K.-T. (Kuo-Tsai), 1923-1987. https://id.oclc.org/worldcat/entity/E39PBJdmpGrCr489BQ73VjHDMP http://id.loc.gov/authorities/names/n00047159 has work: Iterated integrals and cycles on algebraic manifolds (Text) https://id.oclc.org/worldcat/entity/E39PCFw3qHmWDmd4c6jd7b66PP https://id.oclc.org/worldcat/ontology/hasWork Print version: Harris, Bruno. Iterated integrals and cycles on algebraic manifolds. Singapore ; River Edge, NJ : World Scientific, ©2004 981238720X (OCoLC)55990946 Nankai tracts in mathematics ; v. 7. http://id.loc.gov/authorities/names/n2001000055 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130042 Volltext |
spellingShingle | Harris, Bruno Iterated integrals and cycles on algebraic manifolds / Nankai tracts in mathematics ; Iterated integrals, Chen's flat connection and ~1 -- Iterated integrals on compact Riemann surfaces -- The generalized linking pairing and the heat kernel. Integrals. http://id.loc.gov/authorities/subjects/sh85067099 Algebraic cycles. http://id.loc.gov/authorities/subjects/sh85035063 Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Intégrales. Cycles algébriques. Théorie algébrique des nombres. Variétés (Mathématiques) Géométrie algébrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Algebraic cycles. cct Algebraic number theory. cct Manifolds (Mathematics) cct Geometry, Algebraic. cct Integrals. cct Algebraic cycles fast Algebraic number theory fast Geometry, Algebraic fast Integrals fast Manifolds (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067099 http://id.loc.gov/authorities/subjects/sh85035063 http://id.loc.gov/authorities/subjects/sh85003436 http://id.loc.gov/authorities/subjects/sh85080549 http://id.loc.gov/authorities/subjects/sh85054140 |
title | Iterated integrals and cycles on algebraic manifolds / |
title_auth | Iterated integrals and cycles on algebraic manifolds / |
title_exact_search | Iterated integrals and cycles on algebraic manifolds / |
title_full | Iterated integrals and cycles on algebraic manifolds / Bruno Harris. |
title_fullStr | Iterated integrals and cycles on algebraic manifolds / Bruno Harris. |
title_full_unstemmed | Iterated integrals and cycles on algebraic manifolds / Bruno Harris. |
title_short | Iterated integrals and cycles on algebraic manifolds / |
title_sort | iterated integrals and cycles on algebraic manifolds |
topic | Integrals. http://id.loc.gov/authorities/subjects/sh85067099 Algebraic cycles. http://id.loc.gov/authorities/subjects/sh85035063 Algebraic number theory. http://id.loc.gov/authorities/subjects/sh85003436 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Intégrales. Cycles algébriques. Théorie algébrique des nombres. Variétés (Mathématiques) Géométrie algébrique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Algebraic cycles. cct Algebraic number theory. cct Manifolds (Mathematics) cct Geometry, Algebraic. cct Integrals. cct Algebraic cycles fast Algebraic number theory fast Geometry, Algebraic fast Integrals fast Manifolds (Mathematics) fast |
topic_facet | Integrals. Algebraic cycles. Algebraic number theory. Manifolds (Mathematics) Geometry, Algebraic. Intégrales. Cycles algébriques. Théorie algébrique des nombres. Variétés (Mathématiques) Géométrie algébrique. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Algebraic cycles Algebraic number theory Geometry, Algebraic Integrals |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130042 |
work_keys_str_mv | AT harrisbruno iteratedintegralsandcyclesonalgebraicmanifolds AT chenkt iteratedintegralsandcyclesonalgebraicmanifolds |