Information theory and the central limit theorem /:
This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concer...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : River Edge, NJ :
Imperial College Press ; Distributed by World Scientific Pub.,
©2004.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems. |
Beschreibung: | 1 online resource (xiv, 209 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 199-206) and index. |
ISBN: | 1860945376 9781860945373 9781860944734 1860944736 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm60410400 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 050520s2004 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d DKDLA |d NLGGC |d OCLCQ |d UV0 |d ADU |d E7B |d OCLCQ |d AZK |d COCUF |d MOR |d PIFBR |d OCLCQ |d STF |d WRM |d VTS |d NRAMU |d AGLDB |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d G3B |d UKAHL |d K6U |d LEAUB |d UKCRE |d CUS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 149477516 |a 228114415 |a 475186902 |a 478359385 |a 614757990 |a 646733410 |a 722365913 |a 888527263 |a 961653539 |a 962689897 |a 988511431 |a 991959777 |a 1037751351 |a 1038575901 |a 1045506824 |a 1055379304 |a 1081238787 |a 1086524346 |a 1153533907 |a 1228544285 | ||
020 | |a 1860945376 |q (electronic bk.) | ||
020 | |a 9781860945373 |q (electronic bk.) | ||
020 | |a 9781860944734 | ||
020 | |a 1860944736 | ||
035 | |a (OCoLC)60410400 |z (OCoLC)149477516 |z (OCoLC)228114415 |z (OCoLC)475186902 |z (OCoLC)478359385 |z (OCoLC)614757990 |z (OCoLC)646733410 |z (OCoLC)722365913 |z (OCoLC)888527263 |z (OCoLC)961653539 |z (OCoLC)962689897 |z (OCoLC)988511431 |z (OCoLC)991959777 |z (OCoLC)1037751351 |z (OCoLC)1038575901 |z (OCoLC)1045506824 |z (OCoLC)1055379304 |z (OCoLC)1081238787 |z (OCoLC)1086524346 |z (OCoLC)1153533907 |z (OCoLC)1228544285 | ||
050 | 4 | |a QA273.67 |b .J63 2004eb | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Johnson, Oliver |q (Oliver Thomas), |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJxRGWKBTmKDvktyW6qvpP |0 http://id.loc.gov/authorities/names/no2004107330 | |
245 | 1 | 0 | |a Information theory and the central limit theorem / |c Oliver Johnson. |
260 | |a London : |b Imperial College Press ; |a River Edge, NJ : |b Distributed by World Scientific Pub., |c ©2004. | ||
300 | |a 1 online resource (xiv, 209 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 199-206) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index. | |
520 | |a This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems. | ||
650 | 0 | |a Central limit theorem. |0 http://id.loc.gov/authorities/subjects/sh85021905 | |
650 | 0 | |a Information theory |x Statistical methods. | |
650 | 0 | |a Probabilities. |0 http://id.loc.gov/authorities/subjects/sh85107090 | |
650 | 2 | |a Probability |0 https://id.nlm.nih.gov/mesh/D011336 | |
650 | 6 | |a Théorème central limite. | |
650 | 6 | |a Théorie de l'information |x Méthodes statistiques. | |
650 | 6 | |a Probabilités. | |
650 | 7 | |a probability. |2 aat | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Central limit theorem |2 fast | |
650 | 7 | |a Information theory |x Statistical methods |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
776 | 0 | 8 | |i Print version: |a Johnson, Oliver (Oliver Thomas). |t Information theory and the central limit theorem. |d London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub., ©2004 |z 1860944736 |w (OCoLC)56905822 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130010 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130010 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH20407627 | ||
938 | |a ebrary |b EBRY |n ebr10082185 | ||
938 | |a EBSCOhost |b EBSC |n 130010 | ||
938 | |a YBP Library Services |b YANK |n 2361494 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm60410400 |
---|---|
_version_ | 1829094594419097600 |
adam_text | |
any_adam_object | |
author | Johnson, Oliver (Oliver Thomas) |
author_GND | http://id.loc.gov/authorities/names/no2004107330 |
author_facet | Johnson, Oliver (Oliver Thomas) |
author_role | aut |
author_sort | Johnson, Oliver |
author_variant | o j oj |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.67 .J63 2004eb |
callnumber-search | QA273.67 .J63 2004eb |
callnumber-sort | QA 3273.67 J63 42004EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index. |
ctrlnum | (OCoLC)60410400 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04496cam a2200601 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm60410400 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">050520s2004 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UV0</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">UKAHL</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">149477516</subfield><subfield code="a">228114415</subfield><subfield code="a">475186902</subfield><subfield code="a">478359385</subfield><subfield code="a">614757990</subfield><subfield code="a">646733410</subfield><subfield code="a">722365913</subfield><subfield code="a">888527263</subfield><subfield code="a">961653539</subfield><subfield code="a">962689897</subfield><subfield code="a">988511431</subfield><subfield code="a">991959777</subfield><subfield code="a">1037751351</subfield><subfield code="a">1038575901</subfield><subfield code="a">1045506824</subfield><subfield code="a">1055379304</subfield><subfield code="a">1081238787</subfield><subfield code="a">1086524346</subfield><subfield code="a">1153533907</subfield><subfield code="a">1228544285</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860945376</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860945373</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860944734</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860944736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60410400</subfield><subfield code="z">(OCoLC)149477516</subfield><subfield code="z">(OCoLC)228114415</subfield><subfield code="z">(OCoLC)475186902</subfield><subfield code="z">(OCoLC)478359385</subfield><subfield code="z">(OCoLC)614757990</subfield><subfield code="z">(OCoLC)646733410</subfield><subfield code="z">(OCoLC)722365913</subfield><subfield code="z">(OCoLC)888527263</subfield><subfield code="z">(OCoLC)961653539</subfield><subfield code="z">(OCoLC)962689897</subfield><subfield code="z">(OCoLC)988511431</subfield><subfield code="z">(OCoLC)991959777</subfield><subfield code="z">(OCoLC)1037751351</subfield><subfield code="z">(OCoLC)1038575901</subfield><subfield code="z">(OCoLC)1045506824</subfield><subfield code="z">(OCoLC)1055379304</subfield><subfield code="z">(OCoLC)1081238787</subfield><subfield code="z">(OCoLC)1086524346</subfield><subfield code="z">(OCoLC)1153533907</subfield><subfield code="z">(OCoLC)1228544285</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA273.67</subfield><subfield code="b">.J63 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Oliver</subfield><subfield code="q">(Oliver Thomas),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxRGWKBTmKDvktyW6qvpP</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2004107330</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Information theory and the central limit theorem /</subfield><subfield code="c">Oliver Johnson.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">Distributed by World Scientific Pub.,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 209 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 199-206) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Central limit theorem.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85021905</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information theory</subfield><subfield code="x">Statistical methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Probabilities.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85107090</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Probability</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D011336</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorème central limite.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de l'information</subfield><subfield code="x">Méthodes statistiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Probabilités.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">probability.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Central limit theorem</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Information theory</subfield><subfield code="x">Statistical methods</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Johnson, Oliver (Oliver Thomas).</subfield><subfield code="t">Information theory and the central limit theorem.</subfield><subfield code="d">London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub., ©2004</subfield><subfield code="z">1860944736</subfield><subfield code="w">(OCoLC)56905822</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=130010</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH20407627</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10082185</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">130010</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2361494</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm60410400 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:35:36Z |
institution | BVB |
isbn | 1860945376 9781860945373 9781860944734 1860944736 |
language | English |
oclc_num | 60410400 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 209 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Imperial College Press ; Distributed by World Scientific Pub., |
record_format | marc |
spelling | Johnson, Oliver (Oliver Thomas), author. https://id.oclc.org/worldcat/entity/E39PBJxRGWKBTmKDvktyW6qvpP http://id.loc.gov/authorities/names/no2004107330 Information theory and the central limit theorem / Oliver Johnson. London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub., ©2004. 1 online resource (xiv, 209 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references (pages 199-206) and index. Print version record. Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index. This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems. Central limit theorem. http://id.loc.gov/authorities/subjects/sh85021905 Information theory Statistical methods. Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Probability https://id.nlm.nih.gov/mesh/D011336 Théorème central limite. Théorie de l'information Méthodes statistiques. Probabilités. probability. aat MATHEMATICS Probability & Statistics General. bisacsh Central limit theorem fast Information theory Statistical methods fast Probabilities fast Print version: Johnson, Oliver (Oliver Thomas). Information theory and the central limit theorem. London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub., ©2004 1860944736 (OCoLC)56905822 |
spellingShingle | Johnson, Oliver (Oliver Thomas) Information theory and the central limit theorem / Information Theory and The Central Limit Theorem; Preface; Contents; 1. Introduction to Information Theory; 2. Convergence in Relative Entropy; 3. Non-Identical Variables and Random Vectors; 4. Dependent Random Variables; 5. Convergence to Stable Laws; 6. Convergence on Compact Groups; 7. Convergence to the Poisson Distribution; 8. Free Random Variables; Appendix A Calculating Entropies; Appendix B Poincare Inequalities; Appendix C de Bruijn Identity; Appendix D Entropy Power Inequality; Appendix E Relationships Between Different Forms of Convergence; Bibliography; Index. Central limit theorem. http://id.loc.gov/authorities/subjects/sh85021905 Information theory Statistical methods. Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Probability https://id.nlm.nih.gov/mesh/D011336 Théorème central limite. Théorie de l'information Méthodes statistiques. Probabilités. probability. aat MATHEMATICS Probability & Statistics General. bisacsh Central limit theorem fast Information theory Statistical methods fast Probabilities fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85021905 http://id.loc.gov/authorities/subjects/sh85107090 https://id.nlm.nih.gov/mesh/D011336 |
title | Information theory and the central limit theorem / |
title_auth | Information theory and the central limit theorem / |
title_exact_search | Information theory and the central limit theorem / |
title_full | Information theory and the central limit theorem / Oliver Johnson. |
title_fullStr | Information theory and the central limit theorem / Oliver Johnson. |
title_full_unstemmed | Information theory and the central limit theorem / Oliver Johnson. |
title_short | Information theory and the central limit theorem / |
title_sort | information theory and the central limit theorem |
topic | Central limit theorem. http://id.loc.gov/authorities/subjects/sh85021905 Information theory Statistical methods. Probabilities. http://id.loc.gov/authorities/subjects/sh85107090 Probability https://id.nlm.nih.gov/mesh/D011336 Théorème central limite. Théorie de l'information Méthodes statistiques. Probabilités. probability. aat MATHEMATICS Probability & Statistics General. bisacsh Central limit theorem fast Information theory Statistical methods fast Probabilities fast |
topic_facet | Central limit theorem. Information theory Statistical methods. Probabilities. Probability Théorème central limite. Théorie de l'information Méthodes statistiques. Probabilités. probability. MATHEMATICS Probability & Statistics General. Central limit theorem Information theory Statistical methods Probabilities |
work_keys_str_mv | AT johnsonoliver informationtheoryandthecentrallimittheorem |