Kleinian groups and hyperbolic 3-manifolds :: proceedings of the Warwick Workshop, September 11-14, 2001 /
Collection of papers summarising the state of the art. Ideal for graduate students or established researchers.
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2003.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
299. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Collection of papers summarising the state of the art. Ideal for graduate students or established researchers. |
Beschreibung: | 1 online resource (vii, 384 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 0511065647 9780511065644 9780511542817 051154281X 9780521540131 0521540135 9780511067778 0511067771 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm60326655 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 050509s2003 enka ob 100 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d AU@ |d E7B |d OCLCQ |d IDEBK |d OCLCQ |d CAMBR |d COO |d OL$ |d NLGGC |d DEBSZ |d OCLCQ |d OCLCF |d EBLCP |d AUD |d OCL |d OCLCQ |d OCLCA |d OCLCQ |d VTS |d AGLDB |d REC |d G3B |d STF |d OCLCQ |d UIU |d OCLCQ |d UKSSU |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SFB |d OCLCQ |d LUN | ||
019 | |a 271789982 |a 761647099 |a 846253899 |a 1170576160 |a 1170875269 | ||
020 | |a 0511065647 |q (electronic bk.) | ||
020 | |a 9780511065644 |q (electronic bk.) | ||
020 | |a 9780511542817 |q (electronic bk.) | ||
020 | |a 051154281X |q (electronic bk.) | ||
020 | |a 9780521540131 | ||
020 | |a 0521540135 | ||
020 | |a 9780511067778 | ||
020 | |a 0511067771 | ||
020 | |z 0521540135 |q (Paper) | ||
035 | |a (OCoLC)60326655 |z (OCoLC)271789982 |z (OCoLC)761647099 |z (OCoLC)846253899 |z (OCoLC)1170576160 |z (OCoLC)1170875269 | ||
050 | 4 | |a QA331 |b .K614 2003eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.3 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Kleinian groups and hyperbolic 3-manifolds : |b proceedings of the Warwick Workshop, September 11-14, 2001 / |c edited by Y. Komori, V. Markovic, C. Series. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2003. | ||
300 | |a 1 online resource (vii, 384 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 299 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds. | |
505 | 8 | |a 5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction. | |
505 | 8 | |a 1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nuds. | |
505 | 8 | |a Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry. | |
505 | 8 | |a 1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold. | |
505 | 8 | |a 3.3. Volume of the Borromean rings cone-manifold. | |
520 | |a Collection of papers summarising the state of the art. Ideal for graduate students or established researchers. | ||
650 | 0 | |a Kleinian groups |v Congresses. | |
650 | 0 | |a Three-manifolds (Topology) |v Congresses. | |
650 | 0 | |a Geometry, Hyperbolic |v Congresses. | |
650 | 6 | |a Groupes de Klein |v Congrès. | |
650 | 6 | |a Variétés topologiques à 3 dimensions |v Congrès. | |
650 | 6 | |a Géométrie hyperbolique |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Geometry, Hyperbolic |2 fast | |
650 | 7 | |a Kleinian groups |2 fast | |
650 | 7 | |a Three-manifolds (Topology) |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Komori, Yōhei, |d 1966- |1 https://id.oclc.org/worldcat/entity/E39PCjKBhhcPTXtH99bk8MTMWC | |
700 | 1 | |a Markovic, V. |q (Vladimir) |1 https://id.oclc.org/worldcat/entity/E39PBJfRxPyVXyPXBdXMVWpMfq |0 http://id.loc.gov/authorities/names/nb2003107749 | |
700 | 1 | |a Series, Caroline. |0 http://id.loc.gov/authorities/names/n90697973 | |
776 | 0 | 8 | |i Print version: |t Kleinian groups and hyperbolic 3-manifolds. |d Cambridge ; New York : Cambridge University Press, 2003 |z 0521540135 |w (DLC) 2004273945 |w (OCoLC)52828967 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 299. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120517 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13422859 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL802963 | ||
938 | |a ebrary |b EBRY |n ebr10429068 | ||
938 | |a EBSCOhost |b EBSC |n 120517 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 41481 | ||
938 | |a YBP Library Services |b YANK |n 7656755 | ||
938 | |a YBP Library Services |b YANK |n 7251221 | ||
938 | |a YBP Library Services |b YANK |n 3275859 | ||
938 | |a YBP Library Services |b YANK |n 2301331 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm60326655 |
---|---|
_version_ | 1816881627309015040 |
adam_text | |
any_adam_object | |
author2 | Komori, Yōhei, 1966- Markovic, V. (Vladimir) Series, Caroline |
author2_role | |
author2_variant | y k yk v m vm c s cs |
author_GND | http://id.loc.gov/authorities/names/nb2003107749 http://id.loc.gov/authorities/names/n90697973 |
author_facet | Komori, Yōhei, 1966- Markovic, V. (Vladimir) Series, Caroline |
author_sort | Komori, Yōhei, 1966- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 .K614 2003eb |
callnumber-search | QA331 .K614 2003eb |
callnumber-sort | QA 3331 K614 42003EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds. 5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction. 1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nuds. Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry. 1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold. 3.3. Volume of the Borromean rings cone-manifold. |
ctrlnum | (OCoLC)60326655 |
dewey-full | 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.3 |
dewey-search | 514/.3 |
dewey-sort | 3514 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06791cam a2200817 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm60326655 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">050509s2003 enka ob 100 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">COO</subfield><subfield code="d">OL$</subfield><subfield code="d">NLGGC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">AUD</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">REC</subfield><subfield code="d">G3B</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKSSU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">271789982</subfield><subfield code="a">761647099</subfield><subfield code="a">846253899</subfield><subfield code="a">1170576160</subfield><subfield code="a">1170875269</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511065647</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511065644</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542817</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051154281X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521540131</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521540135</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511067778</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511067771</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521540135</subfield><subfield code="q">(Paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60326655</subfield><subfield code="z">(OCoLC)271789982</subfield><subfield code="z">(OCoLC)761647099</subfield><subfield code="z">(OCoLC)846253899</subfield><subfield code="z">(OCoLC)1170576160</subfield><subfield code="z">(OCoLC)1170875269</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA331</subfield><subfield code="b">.K614 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Kleinian groups and hyperbolic 3-manifolds :</subfield><subfield code="b">proceedings of the Warwick Workshop, September 11-14, 2001 /</subfield><subfield code="c">edited by Y. Komori, V. Markovic, C. Series.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 384 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">299</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nuds.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3. Volume of the Borromean rings cone-manifold.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Collection of papers summarising the state of the art. Ideal for graduate students or established researchers.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Kleinian groups</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Hyperbolic</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Klein</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés topologiques à 3 dimensions</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie hyperbolique</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Hyperbolic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kleinian groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Komori, Yōhei,</subfield><subfield code="d">1966-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKBhhcPTXtH99bk8MTMWC</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Markovic, V.</subfield><subfield code="q">(Vladimir)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJfRxPyVXyPXBdXMVWpMfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2003107749</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Series, Caroline.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90697973</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Kleinian groups and hyperbolic 3-manifolds.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2003</subfield><subfield code="z">0521540135</subfield><subfield code="w">(DLC) 2004273945</subfield><subfield code="w">(OCoLC)52828967</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">299.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120517</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13422859</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL802963</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10429068</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">120517</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">41481</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7656755</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7251221</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3275859</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2301331</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. Conference papers and proceedings fast |
genre_facet | Electronic books. Conference papers and proceedings |
id | ZDB-4-EBA-ocm60326655 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:43Z |
institution | BVB |
isbn | 0511065647 9780511065644 9780511542817 051154281X 9780521540131 0521540135 9780511067778 0511067771 |
language | English |
oclc_num | 60326655 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 384 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / edited by Y. Komori, V. Markovic, C. Series. Cambridge ; New York : Cambridge University Press, 2003. 1 online resource (vii, 384 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 299 Includes bibliographical references. Print version record. Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds. 5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction. 1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nuds. Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry. 1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold. 3.3. Volume of the Borromean rings cone-manifold. Collection of papers summarising the state of the art. Ideal for graduate students or established researchers. Kleinian groups Congresses. Three-manifolds (Topology) Congresses. Geometry, Hyperbolic Congresses. Groupes de Klein Congrès. Variétés topologiques à 3 dimensions Congrès. Géométrie hyperbolique Congrès. MATHEMATICS Topology. bisacsh Geometry, Hyperbolic fast Kleinian groups fast Three-manifolds (Topology) fast Electronic books. Conference papers and proceedings fast Komori, Yōhei, 1966- https://id.oclc.org/worldcat/entity/E39PCjKBhhcPTXtH99bk8MTMWC Markovic, V. (Vladimir) https://id.oclc.org/worldcat/entity/E39PBJfRxPyVXyPXBdXMVWpMfq http://id.loc.gov/authorities/names/nb2003107749 Series, Caroline. http://id.loc.gov/authorities/names/n90697973 Print version: Kleinian groups and hyperbolic 3-manifolds. Cambridge ; New York : Cambridge University Press, 2003 0521540135 (DLC) 2004273945 (OCoLC)52828967 London Mathematical Society lecture note series ; 299. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120517 Volltext |
spellingShingle | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / London Mathematical Society lecture note series ; Cover; Series-title; Title; Copyright; Contents; Preface; Part I Hyperbolic 3-manifolds; Combinatorial and geometrical aspects of hyperbolic 3-manifolds; 1. Introduction; 1.1. Object of Study; 1.2. Kleinian surface groups; 1.3. Models and bounds; 1.4. Plan; 2. Curve complex and model manifold; 2.1. The complex of curves; 2.2. Model construction; 2.3. Geometry of the model; 3. From ending laminations to model manifold; 3.1. Background; 4. The quasiconvexity argument; 4.1. The bounded-curve projection; 4.2. Definition of Pi; 5. Quasiconvexity and projection bounds. 5.1. Relative bounds for subsurfaces5.2. Penetration in Margulis tubes; 5.3. Proof of the tube penetration theorem; 6. A priori length bounds and model map; 6.1. Proving the a priori bounds; 6.2. Constructing the Lipschitz map; 6.3. Consequences; References; Harmonic deformations of hyperbolic 3-manifolds; 1. Introduction; 2. Deformations of hyperbolic structures; 3. Infinitesimal harmonic deformations; 4. Effective Rigidity; 5. A quantitative hyperbolic Dehn surgery theorem; 6. Kleinian groups and boundary value theory; References; Cone-manifolds and the density conjecture; 1. Introduction. 1.1. Approximating the ends1.2. Realizing ends on a Bers boundary; 1.3. Candidate approximates; 1.4. Plan of the paper; 1.5. Acknowledgments; 2. Cone-deformations; 2.1. The drilling theorem; 3. Grafting short geodesics; 3.1. Graftings as cone-manifolds.; 3.2. Simultaneous grafting; 4. Drilling and asymptotic isolation of ends; 4.1. Example; 4.2. Isolation of ends; 4.3. Realizing ends in Bers compactifications; 4.4. Binding realizations; 5. Incompressible ends; References; Les géodésiques fermées d'une variété hyperbolique en tant que nuds. Closed geodesics in a hyperbolic manifold, viewed as knots1. Introduction; 2. Les géodésiques courtes dans une variété hyperbolique homéo-morphe à S R; 3. Le cas des variétés à bord compressible; Références; Ending laminations in the Masur domain; 1. Introduction; 2. Preliminaries; 2.1. Compact cores; 2.2. Compression bodies; 2.3. Function groups; 2.4. Boundary groups; 2.5. Laminations on surfaces; 2.6. Pleated surfaces; 3. Laminations on the exterior boundary; 4. Compactness theorem; 5. Main results; References; Quasi-arcs in the limit set of a singly degenerate group with bounded geometry. 1. Introduction2. Preliminaries; 2.1. Notation; 2.2. Model manifolds; 3. Proof of theorems; 3.1. Proof of Theorem 1.3; 3.2. Proof of Theorem 1.2; 3.3. Proof of Theorem 1.1; 3.4. Uncountably many quasi-arcs; References; On hyperbolic and spherical volumes for knot and link cone-manifolds; 1. Introduction; 2. Trigonometrical identities for knots and links; 2.1. Cone-manifolds, complex distances and lengths; 2.2. Whitehead link cone-manifold; 2.3. The Borromean cone-manifold; 3. Explicit volume calculation; 3.1. The Schläfli formula; 3.2. Volume of the Whitehead link cone-manifold. 3.3. Volume of the Borromean rings cone-manifold. Kleinian groups Congresses. Three-manifolds (Topology) Congresses. Geometry, Hyperbolic Congresses. Groupes de Klein Congrès. Variétés topologiques à 3 dimensions Congrès. Géométrie hyperbolique Congrès. MATHEMATICS Topology. bisacsh Geometry, Hyperbolic fast Kleinian groups fast Three-manifolds (Topology) fast |
title | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / |
title_auth | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / |
title_exact_search | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / |
title_full | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / edited by Y. Komori, V. Markovic, C. Series. |
title_fullStr | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / edited by Y. Komori, V. Markovic, C. Series. |
title_full_unstemmed | Kleinian groups and hyperbolic 3-manifolds : proceedings of the Warwick Workshop, September 11-14, 2001 / edited by Y. Komori, V. Markovic, C. Series. |
title_short | Kleinian groups and hyperbolic 3-manifolds : |
title_sort | kleinian groups and hyperbolic 3 manifolds proceedings of the warwick workshop september 11 14 2001 |
title_sub | proceedings of the Warwick Workshop, September 11-14, 2001 / |
topic | Kleinian groups Congresses. Three-manifolds (Topology) Congresses. Geometry, Hyperbolic Congresses. Groupes de Klein Congrès. Variétés topologiques à 3 dimensions Congrès. Géométrie hyperbolique Congrès. MATHEMATICS Topology. bisacsh Geometry, Hyperbolic fast Kleinian groups fast Three-manifolds (Topology) fast |
topic_facet | Kleinian groups Congresses. Three-manifolds (Topology) Congresses. Geometry, Hyperbolic Congresses. Groupes de Klein Congrès. Variétés topologiques à 3 dimensions Congrès. Géométrie hyperbolique Congrès. MATHEMATICS Topology. Geometry, Hyperbolic Kleinian groups Three-manifolds (Topology) Electronic books. Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120517 |
work_keys_str_mv | AT komoriyohei kleiniangroupsandhyperbolic3manifoldsproceedingsofthewarwickworkshopseptember11142001 AT markovicv kleiniangroupsandhyperbolic3manifoldsproceedingsofthewarwickworkshopseptember11142001 AT seriescaroline kleiniangroupsandhyperbolic3manifoldsproceedingsofthewarwickworkshopseptember11142001 |