Problems & solutions in group theory for physicists /:
"This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory." &...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J. :
World Scientific,
©2004.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory." "The book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry."--Jacket. |
Beschreibung: | 1 online resource (x, 464 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 457-459) and index. |
ISBN: | 9812562419 9789812562418 9789812388322 981238832X 1281872407 9781281872401 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm59283435 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 050422s2004 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d IDEBK |d OCLCQ |d UV0 |d EBLCP |d DKDLA |d ADU |d E7B |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d INTCL |d JBG |d COCUF |d AGLDB |d CCO |d MOR |d PIFBR |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d G3B |d DKC |d OCLCQ |d UKAHL |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 130847636 |a 228136398 |a 475328847 |a 478403835 |a 614855357 |a 646731404 |a 722353948 |a 748530922 |a 815742857 |a 888690010 |a 961532622 |a 962665672 |a 1057653535 |a 1087447309 | ||
020 | |a 9812562419 |q (electronic bk.) | ||
020 | |a 9789812562418 |q (electronic bk.) | ||
020 | |a 9789812388322 |q (alk. paper) | ||
020 | |a 981238832X |q (alk. paper) | ||
020 | |a 1281872407 | ||
020 | |a 9781281872401 | ||
035 | |a (OCoLC)59283435 |z (OCoLC)130847636 |z (OCoLC)228136398 |z (OCoLC)475328847 |z (OCoLC)478403835 |z (OCoLC)614855357 |z (OCoLC)646731404 |z (OCoLC)722353948 |z (OCoLC)748530922 |z (OCoLC)815742857 |z (OCoLC)888690010 |z (OCoLC)961532622 |z (OCoLC)962665672 |z (OCoLC)1057653535 |z (OCoLC)1087447309 | ||
050 | 4 | |a QC20.7.G76 |b M3 2004eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
072 | 7 | |a PBKF |2 bicssc | |
082 | 7 | |a 530.15/22 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ma, Zhongqi, |d 1940- |1 https://id.oclc.org/worldcat/entity/E39PCjr7dxPQVvdfDH94JX7wVK |0 http://id.loc.gov/authorities/names/nr94019232 | |
245 | 1 | 0 | |a Problems & solutions in group theory for physicists / |c Zhong-Qi Ma, Xiao-Yan Gu. |
246 | 3 | |a Problems and solutions in group theory for physicists | |
246 | 3 | 0 | |a Group theory for physicists |
260 | |a River Edge, N.J. : |b World Scientific, |c ©2004. | ||
300 | |a 1 online resource (x, 464 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
504 | |a Includes bibliographical references (pages 457-459) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover -- Contents -- Preface -- 1. REVIEW ON LINEAR ALGEBRAS -- 1.1 Eigenvalues and Eigenvectors of a Matrix -- 1.2 Some Special Matrices -- 1.3 Similarity Transformation -- 2. GROUP AND ITS SUBSETS -- 2.1 Definition of a Group -- 2.2 Subsets in a Group -- 2.3 Homomorphism of Groups -- 3. THEORY OF REPRESENTATIONS -- 3.1 Transformation Operators for a Scalar Function -- 3.2 Inequivalent and Irreducible Representations -- 3.3 Subduced and Induced Representations -- 3.4 The Clebsch-Gardan Coefficients -- 4. THREE-DIMENSIONAL ROTATION GROUP -- 4.1 SO(3) Group and Its Covering Group SU(2) -- 4.2 Inequivalent and Irreducible Representations -- 4.3 Lie Groups and Lie Theorems -- 4.4 Irreducible Tensor Operators -- 4.5 Unitary Representations with Infinite Dimensions -- 5. SYMMETRY OF CRYSTALS -- 5.1 Symmetric Operations and Space Groups -- 5.2 Symmetric Elements -- 5.3 International Notations for Space Groups -- 6. PERMUTATION GROUPS -- 6.1 Multiplication of Permutations -- 6.2 Young Patterns, Young Tableaux and Young Operators -- 6.3 Primitive Idempotents in the Group Algebra -- 6.4 Irreducible Representations and Characters -- 6.5 The Inner and Outer Products of Representations -- 7. LIE GROUPS AND LIE ALGEBRAS -- 7.1 Classification of Semisimple Lie Algebras -- 7.2 Irreducible Representations and the Chevalley Bases -- 7.3 Reduction of the Direct Product of Representations -- 8. UNITARY GROUPS -- 8.1 The SU(N) Group and Its Lie Algebra -- 8.2 Irreducible Tensor Representations of SU(N) -- 8.3 Orthonormal Bases for Irreducible Representations -- 8.4 Subduced Representations -- 8.5 Casimir Invariants of SU(N) -- 9. REAL ORTHOGONAL GROUPS -- 9.1 Tensor Representations of SO(N) -- 9.2 Spinor Representations of SO(N) -- 9.3 SO(4) Group and the Lorentz Group -- 10. THE SYMPLECTIC GROUPS -- 10.1 The Groups Sp(2l, R) and USp(2l) -- 10.2 Irreducible Representations of Sp(2l) -- Bibliography -- Index. | |
520 | |a "This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory." "The book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry."--Jacket. | ||
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Théorie des groupes. | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Group theory |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
700 | 1 | |a Gu, X. Y. |q (Xiao-Yan) |1 https://id.oclc.org/worldcat/entity/E39PCjB4VbqPTVF9TMtWJqDBxC |0 http://id.loc.gov/authorities/names/n2004002615 | |
776 | 0 | 8 | |i Print version: |a Ma, Zhongqi, 1940- |t Problems & solutions in group theory for physicists. |d River Edge, N.J. : World Scientific, ©2004 |z 981238832X |w (DLC) 2004041980 |w (OCoLC)54611297 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129826 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH21190562 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL227129 | ||
938 | |a ebrary |b EBRY |n ebr10078537 | ||
938 | |a EBSCOhost |b EBSC |n 129826 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 187240 | ||
938 | |a YBP Library Services |b YANK |n 2405933 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm59283435 |
---|---|
_version_ | 1816881627005976576 |
adam_text | |
any_adam_object | |
author | Ma, Zhongqi, 1940- |
author2 | Gu, X. Y. (Xiao-Yan) |
author2_role | |
author2_variant | x y g xy xyg |
author_GND | http://id.loc.gov/authorities/names/nr94019232 http://id.loc.gov/authorities/names/n2004002615 |
author_facet | Ma, Zhongqi, 1940- Gu, X. Y. (Xiao-Yan) |
author_role | |
author_sort | Ma, Zhongqi, 1940- |
author_variant | z m zm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.G76 M3 2004eb |
callnumber-search | QC20.7.G76 M3 2004eb |
callnumber-sort | QC 220.7 G76 M3 42004EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover -- Contents -- Preface -- 1. REVIEW ON LINEAR ALGEBRAS -- 1.1 Eigenvalues and Eigenvectors of a Matrix -- 1.2 Some Special Matrices -- 1.3 Similarity Transformation -- 2. GROUP AND ITS SUBSETS -- 2.1 Definition of a Group -- 2.2 Subsets in a Group -- 2.3 Homomorphism of Groups -- 3. THEORY OF REPRESENTATIONS -- 3.1 Transformation Operators for a Scalar Function -- 3.2 Inequivalent and Irreducible Representations -- 3.3 Subduced and Induced Representations -- 3.4 The Clebsch-Gardan Coefficients -- 4. THREE-DIMENSIONAL ROTATION GROUP -- 4.1 SO(3) Group and Its Covering Group SU(2) -- 4.2 Inequivalent and Irreducible Representations -- 4.3 Lie Groups and Lie Theorems -- 4.4 Irreducible Tensor Operators -- 4.5 Unitary Representations with Infinite Dimensions -- 5. SYMMETRY OF CRYSTALS -- 5.1 Symmetric Operations and Space Groups -- 5.2 Symmetric Elements -- 5.3 International Notations for Space Groups -- 6. PERMUTATION GROUPS -- 6.1 Multiplication of Permutations -- 6.2 Young Patterns, Young Tableaux and Young Operators -- 6.3 Primitive Idempotents in the Group Algebra -- 6.4 Irreducible Representations and Characters -- 6.5 The Inner and Outer Products of Representations -- 7. LIE GROUPS AND LIE ALGEBRAS -- 7.1 Classification of Semisimple Lie Algebras -- 7.2 Irreducible Representations and the Chevalley Bases -- 7.3 Reduction of the Direct Product of Representations -- 8. UNITARY GROUPS -- 8.1 The SU(N) Group and Its Lie Algebra -- 8.2 Irreducible Tensor Representations of SU(N) -- 8.3 Orthonormal Bases for Irreducible Representations -- 8.4 Subduced Representations -- 8.5 Casimir Invariants of SU(N) -- 9. REAL ORTHOGONAL GROUPS -- 9.1 Tensor Representations of SO(N) -- 9.2 Spinor Representations of SO(N) -- 9.3 SO(4) Group and the Lorentz Group -- 10. THE SYMPLECTIC GROUPS -- 10.1 The Groups Sp(2l, R) and USp(2l) -- 10.2 Irreducible Representations of Sp(2l) -- Bibliography -- Index. |
ctrlnum | (OCoLC)59283435 |
dewey-full | 530.15/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/22 |
dewey-search | 530.15/22 |
dewey-sort | 3530.15 222 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05835cam a22006374a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm59283435 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">050422s2004 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UV0</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">INTCL</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CCO</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">130847636</subfield><subfield code="a">228136398</subfield><subfield code="a">475328847</subfield><subfield code="a">478403835</subfield><subfield code="a">614855357</subfield><subfield code="a">646731404</subfield><subfield code="a">722353948</subfield><subfield code="a">748530922</subfield><subfield code="a">815742857</subfield><subfield code="a">888690010</subfield><subfield code="a">961532622</subfield><subfield code="a">962665672</subfield><subfield code="a">1057653535</subfield><subfield code="a">1087447309</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812562419</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812562418</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812388322</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981238832X</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281872407</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281872401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)59283435</subfield><subfield code="z">(OCoLC)130847636</subfield><subfield code="z">(OCoLC)228136398</subfield><subfield code="z">(OCoLC)475328847</subfield><subfield code="z">(OCoLC)478403835</subfield><subfield code="z">(OCoLC)614855357</subfield><subfield code="z">(OCoLC)646731404</subfield><subfield code="z">(OCoLC)722353948</subfield><subfield code="z">(OCoLC)748530922</subfield><subfield code="z">(OCoLC)815742857</subfield><subfield code="z">(OCoLC)888690010</subfield><subfield code="z">(OCoLC)961532622</subfield><subfield code="z">(OCoLC)962665672</subfield><subfield code="z">(OCoLC)1057653535</subfield><subfield code="z">(OCoLC)1087447309</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.G76</subfield><subfield code="b">M3 2004eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKF</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.15/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ma, Zhongqi,</subfield><subfield code="d">1940-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjr7dxPQVvdfDH94JX7wVK</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr94019232</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Problems & solutions in group theory for physicists /</subfield><subfield code="c">Zhong-Qi Ma, Xiao-Yan Gu.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Problems and solutions in group theory for physicists</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Group theory for physicists</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 464 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 457-459) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Contents -- Preface -- 1. REVIEW ON LINEAR ALGEBRAS -- 1.1 Eigenvalues and Eigenvectors of a Matrix -- 1.2 Some Special Matrices -- 1.3 Similarity Transformation -- 2. GROUP AND ITS SUBSETS -- 2.1 Definition of a Group -- 2.2 Subsets in a Group -- 2.3 Homomorphism of Groups -- 3. THEORY OF REPRESENTATIONS -- 3.1 Transformation Operators for a Scalar Function -- 3.2 Inequivalent and Irreducible Representations -- 3.3 Subduced and Induced Representations -- 3.4 The Clebsch-Gardan Coefficients -- 4. THREE-DIMENSIONAL ROTATION GROUP -- 4.1 SO(3) Group and Its Covering Group SU(2) -- 4.2 Inequivalent and Irreducible Representations -- 4.3 Lie Groups and Lie Theorems -- 4.4 Irreducible Tensor Operators -- 4.5 Unitary Representations with Infinite Dimensions -- 5. SYMMETRY OF CRYSTALS -- 5.1 Symmetric Operations and Space Groups -- 5.2 Symmetric Elements -- 5.3 International Notations for Space Groups -- 6. PERMUTATION GROUPS -- 6.1 Multiplication of Permutations -- 6.2 Young Patterns, Young Tableaux and Young Operators -- 6.3 Primitive Idempotents in the Group Algebra -- 6.4 Irreducible Representations and Characters -- 6.5 The Inner and Outer Products of Representations -- 7. LIE GROUPS AND LIE ALGEBRAS -- 7.1 Classification of Semisimple Lie Algebras -- 7.2 Irreducible Representations and the Chevalley Bases -- 7.3 Reduction of the Direct Product of Representations -- 8. UNITARY GROUPS -- 8.1 The SU(N) Group and Its Lie Algebra -- 8.2 Irreducible Tensor Representations of SU(N) -- 8.3 Orthonormal Bases for Irreducible Representations -- 8.4 Subduced Representations -- 8.5 Casimir Invariants of SU(N) -- 9. REAL ORTHOGONAL GROUPS -- 9.1 Tensor Representations of SO(N) -- 9.2 Spinor Representations of SO(N) -- 9.3 SO(4) Group and the Lorentz Group -- 10. THE SYMPLECTIC GROUPS -- 10.1 The Groups Sp(2l, R) and USp(2l) -- 10.2 Irreducible Representations of Sp(2l) -- Bibliography -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory." "The book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry."--Jacket.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, X. Y.</subfield><subfield code="q">(Xiao-Yan)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjB4VbqPTVF9TMtWJqDBxC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2004002615</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ma, Zhongqi, 1940-</subfield><subfield code="t">Problems & solutions in group theory for physicists.</subfield><subfield code="d">River Edge, N.J. : World Scientific, ©2004</subfield><subfield code="z">981238832X</subfield><subfield code="w">(DLC) 2004041980</subfield><subfield code="w">(OCoLC)54611297</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129826</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21190562</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL227129</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10078537</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">129826</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">187240</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2405933</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm59283435 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:43Z |
institution | BVB |
isbn | 9812562419 9789812562418 9789812388322 981238832X 1281872407 9781281872401 |
language | English |
oclc_num | 59283435 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 464 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific, |
record_format | marc |
spelling | Ma, Zhongqi, 1940- https://id.oclc.org/worldcat/entity/E39PCjr7dxPQVvdfDH94JX7wVK http://id.loc.gov/authorities/names/nr94019232 Problems & solutions in group theory for physicists / Zhong-Qi Ma, Xiao-Yan Gu. Problems and solutions in group theory for physicists Group theory for physicists River Edge, N.J. : World Scientific, ©2004. 1 online resource (x, 464 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Includes bibliographical references (pages 457-459) and index. Print version record. Cover -- Contents -- Preface -- 1. REVIEW ON LINEAR ALGEBRAS -- 1.1 Eigenvalues and Eigenvectors of a Matrix -- 1.2 Some Special Matrices -- 1.3 Similarity Transformation -- 2. GROUP AND ITS SUBSETS -- 2.1 Definition of a Group -- 2.2 Subsets in a Group -- 2.3 Homomorphism of Groups -- 3. THEORY OF REPRESENTATIONS -- 3.1 Transformation Operators for a Scalar Function -- 3.2 Inequivalent and Irreducible Representations -- 3.3 Subduced and Induced Representations -- 3.4 The Clebsch-Gardan Coefficients -- 4. THREE-DIMENSIONAL ROTATION GROUP -- 4.1 SO(3) Group and Its Covering Group SU(2) -- 4.2 Inequivalent and Irreducible Representations -- 4.3 Lie Groups and Lie Theorems -- 4.4 Irreducible Tensor Operators -- 4.5 Unitary Representations with Infinite Dimensions -- 5. SYMMETRY OF CRYSTALS -- 5.1 Symmetric Operations and Space Groups -- 5.2 Symmetric Elements -- 5.3 International Notations for Space Groups -- 6. PERMUTATION GROUPS -- 6.1 Multiplication of Permutations -- 6.2 Young Patterns, Young Tableaux and Young Operators -- 6.3 Primitive Idempotents in the Group Algebra -- 6.4 Irreducible Representations and Characters -- 6.5 The Inner and Outer Products of Representations -- 7. LIE GROUPS AND LIE ALGEBRAS -- 7.1 Classification of Semisimple Lie Algebras -- 7.2 Irreducible Representations and the Chevalley Bases -- 7.3 Reduction of the Direct Product of Representations -- 8. UNITARY GROUPS -- 8.1 The SU(N) Group and Its Lie Algebra -- 8.2 Irreducible Tensor Representations of SU(N) -- 8.3 Orthonormal Bases for Irreducible Representations -- 8.4 Subduced Representations -- 8.5 Casimir Invariants of SU(N) -- 9. REAL ORTHOGONAL GROUPS -- 9.1 Tensor Representations of SO(N) -- 9.2 Spinor Representations of SO(N) -- 9.3 SO(4) Group and the Lorentz Group -- 10. THE SYMPLECTIC GROUPS -- 10.1 The Groups Sp(2l, R) and USp(2l) -- 10.2 Irreducible Representations of Sp(2l) -- Bibliography -- Index. "This book is aimed at graduate students in physics who are studying group theory and its application to physics. It contains a short explanation of the fundamental knowledge and method, and the fundamental exercises for the method, as well as some important conclusions in group theory." "The book can be used by graduate students and young researchers in physics, especially theoretical physics. It is also suitable for some graduate students in theoretical chemistry."--Jacket. Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Théorie des groupes. Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Group theory fast Mathematical physics fast Gu, X. Y. (Xiao-Yan) https://id.oclc.org/worldcat/entity/E39PCjB4VbqPTVF9TMtWJqDBxC http://id.loc.gov/authorities/names/n2004002615 Print version: Ma, Zhongqi, 1940- Problems & solutions in group theory for physicists. River Edge, N.J. : World Scientific, ©2004 981238832X (DLC) 2004041980 (OCoLC)54611297 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129826 Volltext |
spellingShingle | Ma, Zhongqi, 1940- Problems & solutions in group theory for physicists / Cover -- Contents -- Preface -- 1. REVIEW ON LINEAR ALGEBRAS -- 1.1 Eigenvalues and Eigenvectors of a Matrix -- 1.2 Some Special Matrices -- 1.3 Similarity Transformation -- 2. GROUP AND ITS SUBSETS -- 2.1 Definition of a Group -- 2.2 Subsets in a Group -- 2.3 Homomorphism of Groups -- 3. THEORY OF REPRESENTATIONS -- 3.1 Transformation Operators for a Scalar Function -- 3.2 Inequivalent and Irreducible Representations -- 3.3 Subduced and Induced Representations -- 3.4 The Clebsch-Gardan Coefficients -- 4. THREE-DIMENSIONAL ROTATION GROUP -- 4.1 SO(3) Group and Its Covering Group SU(2) -- 4.2 Inequivalent and Irreducible Representations -- 4.3 Lie Groups and Lie Theorems -- 4.4 Irreducible Tensor Operators -- 4.5 Unitary Representations with Infinite Dimensions -- 5. SYMMETRY OF CRYSTALS -- 5.1 Symmetric Operations and Space Groups -- 5.2 Symmetric Elements -- 5.3 International Notations for Space Groups -- 6. PERMUTATION GROUPS -- 6.1 Multiplication of Permutations -- 6.2 Young Patterns, Young Tableaux and Young Operators -- 6.3 Primitive Idempotents in the Group Algebra -- 6.4 Irreducible Representations and Characters -- 6.5 The Inner and Outer Products of Representations -- 7. LIE GROUPS AND LIE ALGEBRAS -- 7.1 Classification of Semisimple Lie Algebras -- 7.2 Irreducible Representations and the Chevalley Bases -- 7.3 Reduction of the Direct Product of Representations -- 8. UNITARY GROUPS -- 8.1 The SU(N) Group and Its Lie Algebra -- 8.2 Irreducible Tensor Representations of SU(N) -- 8.3 Orthonormal Bases for Irreducible Representations -- 8.4 Subduced Representations -- 8.5 Casimir Invariants of SU(N) -- 9. REAL ORTHOGONAL GROUPS -- 9.1 Tensor Representations of SO(N) -- 9.2 Spinor Representations of SO(N) -- 9.3 SO(4) Group and the Lorentz Group -- 10. THE SYMPLECTIC GROUPS -- 10.1 The Groups Sp(2l, R) and USp(2l) -- 10.2 Irreducible Representations of Sp(2l) -- Bibliography -- Index. Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Théorie des groupes. Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Group theory fast Mathematical physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85057512 http://id.loc.gov/authorities/subjects/sh85082129 |
title | Problems & solutions in group theory for physicists / |
title_alt | Problems and solutions in group theory for physicists Group theory for physicists |
title_auth | Problems & solutions in group theory for physicists / |
title_exact_search | Problems & solutions in group theory for physicists / |
title_full | Problems & solutions in group theory for physicists / Zhong-Qi Ma, Xiao-Yan Gu. |
title_fullStr | Problems & solutions in group theory for physicists / Zhong-Qi Ma, Xiao-Yan Gu. |
title_full_unstemmed | Problems & solutions in group theory for physicists / Zhong-Qi Ma, Xiao-Yan Gu. |
title_short | Problems & solutions in group theory for physicists / |
title_sort | problems solutions in group theory for physicists |
topic | Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Théorie des groupes. Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Group theory fast Mathematical physics fast |
topic_facet | Group theory. Mathematical physics. Théorie des groupes. Physique mathématique. SCIENCE Physics Mathematical & Computational. Group theory Mathematical physics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129826 |
work_keys_str_mv | AT mazhongqi problemssolutionsingrouptheoryforphysicists AT guxy problemssolutionsingrouptheoryforphysicists AT mazhongqi problemsandsolutionsingrouptheoryforphysicists AT guxy problemsandsolutionsingrouptheoryforphysicists AT mazhongqi grouptheoryforphysicists AT guxy grouptheoryforphysicists |