Analytic methods for Diophantine equations and Diophantine inequalities /:
"Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine in...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2005.
|
Ausgabe: | 2nd ed. |
Schriftenreihe: | Cambridge mathematical library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an introduction to a timeless area of number theory that is still as relevant today as it was when the book originally appeared."--Jacket |
Beschreibung: | 1 online resource (xx, 140 pages) |
Bibliographie: | Includes bibliographical references (pages 134-138) and index. |
ISBN: | 0511080867 9780511080869 0511079346 9780511079344 9780511542893 0511542895 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm59104913 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 050418s2005 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCL |d OCLCQ |d YDXCP |d OCLCQ |d E7B |d TEFOD |d AU@ |d OCLCQ |d OCLCA |d IDEBK |d OCLCQ |d CAMBR |d OCLCF |d OCLCQ |d OL$ |d COO |d TEFOD |d EBLCP |d OCLCQ |d PIFBR |d OCLCQ |d WY@ |d LUE |d INT |d TOF |d OCLCQ |d K6U |d OCLCQ |d AJS |d UKAHL |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL |d SFB | ||
019 | |a 76956560 |a 271784858 |a 813436898 |a 851929222 | ||
020 | |a 0511080867 |q (electronic bk.) | ||
020 | |a 9780511080869 |q (electronic bk.) | ||
020 | |a 0511079346 |q (electronic bk.) | ||
020 | |a 9780511079344 |q (electronic bk.) | ||
020 | |a 9780511542893 |q (electronic bk.) | ||
020 | |a 0511542895 |q (electronic bk.) | ||
020 | |z 0521605830 |q (Paper) | ||
020 | |z 9780521605830 | ||
035 | |a (OCoLC)59104913 |z (OCoLC)76956560 |z (OCoLC)271784858 |z (OCoLC)813436898 |z (OCoLC)851929222 | ||
037 | |b OverDrive, Inc. |n http://www.overdrive.com | ||
037 | |a F4F722E0-965E-4ED1-8AB7-64431C4AAD7F |b OverDrive, Inc. |n http://www.overdrive.com | ||
050 | 4 | |a QA242 |b .D28 2005eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.7/4 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Davenport, Harold, |d 1907-1969. |1 https://id.oclc.org/worldcat/entity/E39PBJv8GF7rvvVBGTm8B9yrv3 |0 http://id.loc.gov/authorities/names/n80139843 | |
245 | 1 | 0 | |a Analytic methods for Diophantine equations and Diophantine inequalities / |c H. Davenport ; edited and prepared for publication by T.D. Browning. |
250 | |a 2nd ed. | ||
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2005. | ||
300 | |a 1 online resource (xx, 140 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge mathematical library | |
504 | |a Includes bibliographical references (pages 134-138) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |t Waring's problem / |r R.C. Vaughan -- |t Forms in many variables / |r D.R. Heath-Brown -- |t Diophantine inequalities / |r D.E. Freeman -- |g 1. |t Introduction -- |g 2. |t Waring's problem : history -- |g 3. |t Weyl's inequality and Hua's inequality -- |g 4. |t Waring's problem : the asymptotic formula -- |g 5. |t Waring's problem : the singular series -- |g 6. |t singular series continued -- |g 7. |t equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = N -- |g 8. |t equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 -- |g 9. |t Waring's problem : the number G(k) -- |g 10. |t equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 again -- |g 11. |t General homogeneous equations : Birch's theorem -- |g 12. |t geometry of numbers -- |g 13. |t Cubic forms -- |g 14. |t Cubic forms : bilinear equations -- |g 15. |t Cubic forms : minor arcs and major arcs -- |g 16. |t Cubic forms : the singular integral -- |g 17. |t Cubic forms : the singular series -- |g 18. |t Cubic forms : the p-adic problem -- |g 19. |t Homogeneous equations of higher degree -- |g 20. |t Diophantine inequality. |
520 | 1 | |a "Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an introduction to a timeless area of number theory that is still as relevant today as it was when the book originally appeared."--Jacket | |
650 | 0 | |a Diophantine analysis. |0 http://id.loc.gov/authorities/subjects/sh85038122 | |
650 | 0 | |a Diophantine equations. |0 http://id.loc.gov/authorities/subjects/sh92001030 | |
650 | 6 | |a Analyse diophantienne. | |
650 | 6 | |a Équations diophantiennes. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Diophantine analysis |2 fast | |
650 | 7 | |a Diophantine equations |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Browning, Tim. |0 http://id.loc.gov/authorities/names/n80097164 | |
776 | 0 | 8 | |i Print version: |a Davenport, Harold, 1907- |t Analytic methods for Diophantine equations and Diophantine inequalities. |b 2nd ed. |d Cambridge, UK ; New York : Cambridge University Press, 2005 |z 0521605830 |w (DLC) 2004062101 |w (OCoLC)56924681 |
830 | 0 | |a Cambridge mathematical library. |0 http://id.loc.gov/authorities/names/n88500937 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129308 |3 Volltext |
938 | |a Internet Archive |b INAR |n analyticmethodsf0000dave | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH13422867 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL228239 | ||
938 | |a ebrary |b EBRY |n ebr10428972 | ||
938 | |a EBSCOhost |b EBSC |n 129308 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 41728 | ||
938 | |a YBP Library Services |b YANK |n 3275867 | ||
938 | |a YBP Library Services |b YANK |n 7656656 | ||
938 | |a YBP Library Services |b YANK |n 2301670 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm59104913 |
---|---|
_version_ | 1816881626868613120 |
adam_text | |
any_adam_object | |
author | Davenport, Harold, 1907-1969 |
author2 | Browning, Tim |
author2_role | |
author2_variant | t b tb |
author_GND | http://id.loc.gov/authorities/names/n80139843 http://id.loc.gov/authorities/names/n80097164 |
author_additional | R.C. Vaughan -- D.R. Heath-Brown -- D.E. Freeman -- |
author_facet | Davenport, Harold, 1907-1969 Browning, Tim |
author_role | |
author_sort | Davenport, Harold, 1907-1969 |
author_variant | h d hd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA242 |
callnumber-raw | QA242 .D28 2005eb |
callnumber-search | QA242 .D28 2005eb |
callnumber-sort | QA 3242 D28 42005EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Waring's problem / Forms in many variables / Diophantine inequalities / Introduction -- Waring's problem : history -- Weyl's inequality and Hua's inequality -- Waring's problem : the asymptotic formula -- Waring's problem : the singular series -- singular series continued -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = N -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 -- Waring's problem : the number G(k) -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 again -- General homogeneous equations : Birch's theorem -- geometry of numbers -- Cubic forms -- Cubic forms : bilinear equations -- Cubic forms : minor arcs and major arcs -- Cubic forms : the singular integral -- Cubic forms : the singular series -- Cubic forms : the p-adic problem -- Homogeneous equations of higher degree -- Diophantine inequality. |
ctrlnum | (OCoLC)59104913 |
dewey-full | 512.7/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/4 |
dewey-search | 512.7/4 |
dewey-sort | 3512.7 14 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05185cam a22007334a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm59104913 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">050418s2005 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">TEFOD</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">COO</subfield><subfield code="d">TEFOD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">LUE</subfield><subfield code="d">INT</subfield><subfield code="d">TOF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">76956560</subfield><subfield code="a">271784858</subfield><subfield code="a">813436898</subfield><subfield code="a">851929222</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511080867</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511080869</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511079346</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511079344</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511542893</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511542895</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521605830</subfield><subfield code="q">(Paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521605830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)59104913</subfield><subfield code="z">(OCoLC)76956560</subfield><subfield code="z">(OCoLC)271784858</subfield><subfield code="z">(OCoLC)813436898</subfield><subfield code="z">(OCoLC)851929222</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">F4F722E0-965E-4ED1-8AB7-64431C4AAD7F</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA242</subfield><subfield code="b">.D28 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davenport, Harold,</subfield><subfield code="d">1907-1969.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJv8GF7rvvVBGTm8B9yrv3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80139843</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic methods for Diophantine equations and Diophantine inequalities /</subfield><subfield code="c">H. Davenport ; edited and prepared for publication by T.D. Browning.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 140 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge mathematical library</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 134-138) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Waring's problem /</subfield><subfield code="r">R.C. Vaughan --</subfield><subfield code="t">Forms in many variables /</subfield><subfield code="r">D.R. Heath-Brown --</subfield><subfield code="t">Diophantine inequalities /</subfield><subfield code="r">D.E. Freeman --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Waring's problem : history --</subfield><subfield code="g">3.</subfield><subfield code="t">Weyl's inequality and Hua's inequality --</subfield><subfield code="g">4.</subfield><subfield code="t">Waring's problem : the asymptotic formula --</subfield><subfield code="g">5.</subfield><subfield code="t">Waring's problem : the singular series --</subfield><subfield code="g">6.</subfield><subfield code="t">singular series continued --</subfield><subfield code="g">7.</subfield><subfield code="t">equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = N --</subfield><subfield code="g">8.</subfield><subfield code="t">equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 --</subfield><subfield code="g">9.</subfield><subfield code="t">Waring's problem : the number G(k) --</subfield><subfield code="g">10.</subfield><subfield code="t">equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 again --</subfield><subfield code="g">11.</subfield><subfield code="t">General homogeneous equations : Birch's theorem --</subfield><subfield code="g">12.</subfield><subfield code="t">geometry of numbers --</subfield><subfield code="g">13.</subfield><subfield code="t">Cubic forms --</subfield><subfield code="g">14.</subfield><subfield code="t">Cubic forms : bilinear equations --</subfield><subfield code="g">15.</subfield><subfield code="t">Cubic forms : minor arcs and major arcs --</subfield><subfield code="g">16.</subfield><subfield code="t">Cubic forms : the singular integral --</subfield><subfield code="g">17.</subfield><subfield code="t">Cubic forms : the singular series --</subfield><subfield code="g">18.</subfield><subfield code="t">Cubic forms : the p-adic problem --</subfield><subfield code="g">19.</subfield><subfield code="t">Homogeneous equations of higher degree --</subfield><subfield code="g">20.</subfield><subfield code="t">Diophantine inequality.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an introduction to a timeless area of number theory that is still as relevant today as it was when the book originally appeared."--Jacket</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Diophantine analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85038122</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Diophantine equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92001030</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse diophantienne.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations diophantiennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diophantine analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diophantine equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Browning, Tim.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80097164</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Davenport, Harold, 1907-</subfield><subfield code="t">Analytic methods for Diophantine equations and Diophantine inequalities.</subfield><subfield code="b">2nd ed.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2005</subfield><subfield code="z">0521605830</subfield><subfield code="w">(DLC) 2004062101</subfield><subfield code="w">(OCoLC)56924681</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88500937</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129308</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">analyticmethodsf0000dave</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13422867</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL228239</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10428972</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">129308</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">41728</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3275867</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7656656</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2301670</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocm59104913 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:15:43Z |
institution | BVB |
isbn | 0511080867 9780511080869 0511079346 9780511079344 9780511542893 0511542895 |
language | English |
oclc_num | 59104913 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 140 pages) |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge mathematical library. |
series2 | Cambridge mathematical library |
spelling | Davenport, Harold, 1907-1969. https://id.oclc.org/worldcat/entity/E39PBJv8GF7rvvVBGTm8B9yrv3 http://id.loc.gov/authorities/names/n80139843 Analytic methods for Diophantine equations and Diophantine inequalities / H. Davenport ; edited and prepared for publication by T.D. Browning. 2nd ed. Cambridge, UK ; New York : Cambridge University Press, 2005. 1 online resource (xx, 140 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge mathematical library Includes bibliographical references (pages 134-138) and index. Print version record. Waring's problem / R.C. Vaughan -- Forms in many variables / D.R. Heath-Brown -- Diophantine inequalities / D.E. Freeman -- 1. Introduction -- 2. Waring's problem : history -- 3. Weyl's inequality and Hua's inequality -- 4. Waring's problem : the asymptotic formula -- 5. Waring's problem : the singular series -- 6. singular series continued -- 7. equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = N -- 8. equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 -- 9. Waring's problem : the number G(k) -- 10. equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 again -- 11. General homogeneous equations : Birch's theorem -- 12. geometry of numbers -- 13. Cubic forms -- 14. Cubic forms : bilinear equations -- 15. Cubic forms : minor arcs and major arcs -- 16. Cubic forms : the singular integral -- 17. Cubic forms : the singular series -- 18. Cubic forms : the p-adic problem -- 19. Homogeneous equations of higher degree -- 20. Diophantine inequality. "Harold Davenport was one of the truly great mathematicians of the twentieth century. Based on lectures he gave at the University of Michigan in the early 1960s, this book is concerned with the use of analytic methods in the study of integer solutions to Diophantine equations and Diophantine inequalities. It provides an introduction to a timeless area of number theory that is still as relevant today as it was when the book originally appeared."--Jacket Diophantine analysis. http://id.loc.gov/authorities/subjects/sh85038122 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Analyse diophantienne. Équations diophantiennes. MATHEMATICS Number Theory. bisacsh Diophantine analysis fast Diophantine equations fast Electronic books. Browning, Tim. http://id.loc.gov/authorities/names/n80097164 Print version: Davenport, Harold, 1907- Analytic methods for Diophantine equations and Diophantine inequalities. 2nd ed. Cambridge, UK ; New York : Cambridge University Press, 2005 0521605830 (DLC) 2004062101 (OCoLC)56924681 Cambridge mathematical library. http://id.loc.gov/authorities/names/n88500937 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129308 Volltext |
spellingShingle | Davenport, Harold, 1907-1969 Analytic methods for Diophantine equations and Diophantine inequalities / Cambridge mathematical library. Waring's problem / Forms in many variables / Diophantine inequalities / Introduction -- Waring's problem : history -- Weyl's inequality and Hua's inequality -- Waring's problem : the asymptotic formula -- Waring's problem : the singular series -- singular series continued -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = N -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 -- Waring's problem : the number G(k) -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 again -- General homogeneous equations : Birch's theorem -- geometry of numbers -- Cubic forms -- Cubic forms : bilinear equations -- Cubic forms : minor arcs and major arcs -- Cubic forms : the singular integral -- Cubic forms : the singular series -- Cubic forms : the p-adic problem -- Homogeneous equations of higher degree -- Diophantine inequality. Diophantine analysis. http://id.loc.gov/authorities/subjects/sh85038122 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Analyse diophantienne. Équations diophantiennes. MATHEMATICS Number Theory. bisacsh Diophantine analysis fast Diophantine equations fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85038122 http://id.loc.gov/authorities/subjects/sh92001030 |
title | Analytic methods for Diophantine equations and Diophantine inequalities / |
title_alt | Waring's problem / Forms in many variables / Diophantine inequalities / Introduction -- Waring's problem : history -- Weyl's inequality and Hua's inequality -- Waring's problem : the asymptotic formula -- Waring's problem : the singular series -- singular series continued -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = N -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 -- Waring's problem : the number G(k) -- equation c[subscript 1]x[subscript 1][superscript k] + ... + c[subscript s]x[subscript s][superscript k] = 0 again -- General homogeneous equations : Birch's theorem -- geometry of numbers -- Cubic forms -- Cubic forms : bilinear equations -- Cubic forms : minor arcs and major arcs -- Cubic forms : the singular integral -- Cubic forms : the singular series -- Cubic forms : the p-adic problem -- Homogeneous equations of higher degree -- Diophantine inequality. |
title_auth | Analytic methods for Diophantine equations and Diophantine inequalities / |
title_exact_search | Analytic methods for Diophantine equations and Diophantine inequalities / |
title_full | Analytic methods for Diophantine equations and Diophantine inequalities / H. Davenport ; edited and prepared for publication by T.D. Browning. |
title_fullStr | Analytic methods for Diophantine equations and Diophantine inequalities / H. Davenport ; edited and prepared for publication by T.D. Browning. |
title_full_unstemmed | Analytic methods for Diophantine equations and Diophantine inequalities / H. Davenport ; edited and prepared for publication by T.D. Browning. |
title_short | Analytic methods for Diophantine equations and Diophantine inequalities / |
title_sort | analytic methods for diophantine equations and diophantine inequalities |
topic | Diophantine analysis. http://id.loc.gov/authorities/subjects/sh85038122 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Analyse diophantienne. Équations diophantiennes. MATHEMATICS Number Theory. bisacsh Diophantine analysis fast Diophantine equations fast |
topic_facet | Diophantine analysis. Diophantine equations. Analyse diophantienne. Équations diophantiennes. MATHEMATICS Number Theory. Diophantine analysis Diophantine equations Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=129308 |
work_keys_str_mv | AT davenportharold analyticmethodsfordiophantineequationsanddiophantineinequalities AT browningtim analyticmethodsfordiophantineequationsanddiophantineinequalities |