Abelian varieties, theta functions, and the Fourier transform /:
The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2003.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
153. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. |
Beschreibung: | 1 online resource (xvi, 292 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 283-289) and index. |
ISBN: | 0511063911 9780511063916 0511072376 9780511072376 9780511546532 051154653X 9780521808040 0521808049 |
ISSN: | 0950-6284 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm57218456 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 041213s2003 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCG |d OCLCQ |d AU@ |d E7B |d NRU |d OCLCQ |d IDEBK |d OCLCQ |d REDDC |d OCLCQ |d EBLCP |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCF |d COO |d OCLCQ |d OL$ |d MNU |d CAMBR |d OCLCQ |d HEBIS |d JBG |d OCLCO |d UAB |d STF |d OCLCQ |d VTS |d AGLDB |d INT |d OCLCQ |d G3B |d YDX |d OCLCQ |d K6U |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB | ||
015 | |a GBA409182 |2 bnb | ||
016 | 7 | |a 000023430587 |2 AU | |
019 | |a 171136238 |a 271786347 |a 668201558 |a 847480804 |a 852197464 |a 1035655932 |a 1058626214 |a 1099195867 | ||
020 | |a 0511063911 |q (electronic bk.) | ||
020 | |a 9780511063916 |q (electronic bk.) | ||
020 | |a 0511072376 | ||
020 | |a 9780511072376 | ||
020 | |a 9780511546532 |q (ebook) | ||
020 | |a 051154653X |q (ebook) | ||
020 | |a 9780521808040 |q (hardback) | ||
020 | |a 0521808049 |q (hardback) | ||
020 | |z 0521808049 |q (Cloth) | ||
020 | |z 9780511057588 |q (Adobe Reader) | ||
020 | |z 905105758X |q (Adobe Reader) | ||
035 | |a (OCoLC)57218456 |z (OCoLC)171136238 |z (OCoLC)271786347 |z (OCoLC)668201558 |z (OCoLC)847480804 |z (OCoLC)852197464 |z (OCoLC)1035655932 |z (OCoLC)1058626214 |z (OCoLC)1099195867 | ||
050 | 4 | |a QA564 |b .P64 2003eb | |
072 | 7 | |a MAT |x 012010 |2 bisacsh | |
082 | 7 | |a 516.3/5 |2 22 | |
084 | |a SK 240 |2 rvk | ||
084 | |a SK 450 |2 rvk | ||
084 | |a SK 750 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Polishchuk, Alexander, |d 1971- |1 https://id.oclc.org/worldcat/entity/E39PCjHmjyRbpXbYjRWbWGj7VC |0 http://id.loc.gov/authorities/names/n2002019503 | |
245 | 1 | 0 | |a Abelian varieties, theta functions, and the Fourier transform / |c Alexander Polishchuk. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2003. | ||
300 | |a 1 online resource (xvi, 292 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 153 | |
504 | |a Includes bibliographical references (pages 283-289) and index. | ||
520 | |a The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. | ||
505 | 0 | |a Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; References; 1 Line Bundles on Complex Tori; 2 Representations of Heisenberg Groups I; 3 Theta Functions I; 4 Representations of Heisenberg Groups II: Intertwining Operators; 5 Theta Functions II: Functional Equation; 6 Mirror Symmetry for Tori; 7 Cohomology of a Line Bundle on a Complex Torus: Mirror Symmetry Approach; 8 Abelian Varieties and Theorem of the Cube; 9 Dual Abelian Variety; 10 Extensions, Biextensions, and Duality; 11 Fourier-Mukai Transform; 12 Mumford Group and Riemann's Quartic Theta Relation. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Abelian varieties. |0 http://id.loc.gov/authorities/subjects/sh85000130 | |
650 | 0 | |a Fourier transformations. |0 http://id.loc.gov/authorities/subjects/sh85051094 | |
650 | 6 | |a Variétés abéliennes. | |
650 | 6 | |a Transformations de Fourier. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Algebraic. |2 bisacsh | |
650 | 7 | |a Abelian varieties |2 fast | |
650 | 7 | |a Fourier transformations |2 fast | |
650 | 7 | |a Abelsche Mannigfaltigkeit |2 gnd |0 http://d-nb.info/gnd/4140992-9 | |
650 | 7 | |a Thetafunktion |2 gnd |0 http://d-nb.info/gnd/4185175-4 | |
650 | 7 | |a Fourier-Transformation |2 gnd |0 http://d-nb.info/gnd/4018014-1 | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
773 | 0 | |t Cambridge tracts in mathematics |g no:153 |x 0950-6284 | |
776 | 0 | 8 | |i Print version: |a Polishchuk, Alexander, 1971- |t Abelian varieties, theta functions, and the Fourier transform. |d Cambridge, UK ; New York : Cambridge University Press, 2003 |z 0521808049 |w (DLC) 2002024457 |w (OCoLC)49320527 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 153. |0 http://id.loc.gov/authorities/names/n42005726 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120692 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13423225 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL217941 | ||
938 | |a ebrary |b EBRY |n ebr10428977 | ||
938 | |a EBSCOhost |b EBSC |n 120692 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 43370 | ||
938 | |a YBP Library Services |b YANK |n 2301182 | ||
938 | |a YBP Library Services |b YANK |n 2618162 | ||
938 | |a YBP Library Services |b YANK |n 3276208 | ||
938 | |a YBP Library Services |b YANK |n 7036652 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm57218456 |
---|---|
_version_ | 1816881622567354369 |
adam_text | |
any_adam_object | |
author | Polishchuk, Alexander, 1971- |
author_GND | http://id.loc.gov/authorities/names/n2002019503 |
author_facet | Polishchuk, Alexander, 1971- |
author_role | |
author_sort | Polishchuk, Alexander, 1971- |
author_variant | a p ap |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA564 |
callnumber-raw | QA564 .P64 2003eb |
callnumber-search | QA564 .P64 2003eb |
callnumber-sort | QA 3564 P64 42003EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 450 SK 750 |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; References; 1 Line Bundles on Complex Tori; 2 Representations of Heisenberg Groups I; 3 Theta Functions I; 4 Representations of Heisenberg Groups II: Intertwining Operators; 5 Theta Functions II: Functional Equation; 6 Mirror Symmetry for Tori; 7 Cohomology of a Line Bundle on a Complex Torus: Mirror Symmetry Approach; 8 Abelian Varieties and Theorem of the Cube; 9 Dual Abelian Variety; 10 Extensions, Biextensions, and Duality; 11 Fourier-Mukai Transform; 12 Mumford Group and Riemann's Quartic Theta Relation. |
ctrlnum | (OCoLC)57218456 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04764cam a22008294a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm57218456 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">041213s2003 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">E7B</subfield><subfield code="d">NRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCF</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">MNU</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA409182</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">000023430587</subfield><subfield code="2">AU</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">171136238</subfield><subfield code="a">271786347</subfield><subfield code="a">668201558</subfield><subfield code="a">847480804</subfield><subfield code="a">852197464</subfield><subfield code="a">1035655932</subfield><subfield code="a">1058626214</subfield><subfield code="a">1099195867</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511063911</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511063916</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511072376</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511072376</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511546532</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051154653X</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521808040</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521808049</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521808049</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511057588</subfield><subfield code="q">(Adobe Reader)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">905105758X</subfield><subfield code="q">(Adobe Reader)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57218456</subfield><subfield code="z">(OCoLC)171136238</subfield><subfield code="z">(OCoLC)271786347</subfield><subfield code="z">(OCoLC)668201558</subfield><subfield code="z">(OCoLC)847480804</subfield><subfield code="z">(OCoLC)852197464</subfield><subfield code="z">(OCoLC)1035655932</subfield><subfield code="z">(OCoLC)1058626214</subfield><subfield code="z">(OCoLC)1099195867</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA564</subfield><subfield code="b">.P64 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Polishchuk, Alexander,</subfield><subfield code="d">1971-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHmjyRbpXbYjRWbWGj7VC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002019503</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Abelian varieties, theta functions, and the Fourier transform /</subfield><subfield code="c">Alexander Polishchuk.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 292 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">153</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 283-289) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; References; 1 Line Bundles on Complex Tori; 2 Representations of Heisenberg Groups I; 3 Theta Functions I; 4 Representations of Heisenberg Groups II: Intertwining Operators; 5 Theta Functions II: Functional Equation; 6 Mirror Symmetry for Tori; 7 Cohomology of a Line Bundle on a Complex Torus: Mirror Symmetry Approach; 8 Abelian Varieties and Theorem of the Cube; 9 Dual Abelian Variety; 10 Extensions, Biextensions, and Duality; 11 Fourier-Mukai Transform; 12 Mumford Group and Riemann's Quartic Theta Relation.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Abelian varieties.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85000130</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fourier transformations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051094</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés abéliennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transformations de Fourier.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Algebraic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abelian varieties</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier transformations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4140992-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thetafunktion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4185175-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4018014-1</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="773" ind1="0" ind2=" "><subfield code="t">Cambridge tracts in mathematics</subfield><subfield code="g">no:153</subfield><subfield code="x">0950-6284</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Polishchuk, Alexander, 1971-</subfield><subfield code="t">Abelian varieties, theta functions, and the Fourier transform.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2003</subfield><subfield code="z">0521808049</subfield><subfield code="w">(DLC) 2002024457</subfield><subfield code="w">(OCoLC)49320527</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">153.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120692</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13423225</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL217941</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10428977</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">120692</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">43370</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2301182</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2618162</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3276208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7036652</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocm57218456 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:39Z |
institution | BVB |
isbn | 0511063911 9780511063916 0511072376 9780511072376 9780511546532 051154653X 9780521808040 0521808049 |
issn | 0950-6284 |
language | English |
oclc_num | 57218456 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 292 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Polishchuk, Alexander, 1971- https://id.oclc.org/worldcat/entity/E39PCjHmjyRbpXbYjRWbWGj7VC http://id.loc.gov/authorities/names/n2002019503 Abelian varieties, theta functions, and the Fourier transform / Alexander Polishchuk. Cambridge, UK ; New York : Cambridge University Press, 2003. 1 online resource (xvi, 292 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 153 Includes bibliographical references (pages 283-289) and index. The aim of this book is to present a modern treatment of the theory of theta functions in the context of algebraic geometry. The novelty of its approach lies in the systematic use of the Fourier-Mukai transform. Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; References; 1 Line Bundles on Complex Tori; 2 Representations of Heisenberg Groups I; 3 Theta Functions I; 4 Representations of Heisenberg Groups II: Intertwining Operators; 5 Theta Functions II: Functional Equation; 6 Mirror Symmetry for Tori; 7 Cohomology of a Line Bundle on a Complex Torus: Mirror Symmetry Approach; 8 Abelian Varieties and Theorem of the Cube; 9 Dual Abelian Variety; 10 Extensions, Biextensions, and Duality; 11 Fourier-Mukai Transform; 12 Mumford Group and Riemann's Quartic Theta Relation. Print version record. Abelian varieties. http://id.loc.gov/authorities/subjects/sh85000130 Fourier transformations. http://id.loc.gov/authorities/subjects/sh85051094 Variétés abéliennes. Transformations de Fourier. MATHEMATICS Geometry Algebraic. bisacsh Abelian varieties fast Fourier transformations fast Abelsche Mannigfaltigkeit gnd http://d-nb.info/gnd/4140992-9 Thetafunktion gnd http://d-nb.info/gnd/4185175-4 Fourier-Transformation gnd http://d-nb.info/gnd/4018014-1 Electronic books. Cambridge tracts in mathematics no:153 0950-6284 Print version: Polishchuk, Alexander, 1971- Abelian varieties, theta functions, and the Fourier transform. Cambridge, UK ; New York : Cambridge University Press, 2003 0521808049 (DLC) 2002024457 (OCoLC)49320527 Cambridge tracts in mathematics ; 153. http://id.loc.gov/authorities/names/n42005726 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120692 Volltext |
spellingShingle | Polishchuk, Alexander, 1971- Abelian varieties, theta functions, and the Fourier transform / Cambridge tracts in mathematics ; Cover; Half-title; Title; Copyright; Contents; Preface; Acknowledgments; References; 1 Line Bundles on Complex Tori; 2 Representations of Heisenberg Groups I; 3 Theta Functions I; 4 Representations of Heisenberg Groups II: Intertwining Operators; 5 Theta Functions II: Functional Equation; 6 Mirror Symmetry for Tori; 7 Cohomology of a Line Bundle on a Complex Torus: Mirror Symmetry Approach; 8 Abelian Varieties and Theorem of the Cube; 9 Dual Abelian Variety; 10 Extensions, Biextensions, and Duality; 11 Fourier-Mukai Transform; 12 Mumford Group and Riemann's Quartic Theta Relation. Abelian varieties. http://id.loc.gov/authorities/subjects/sh85000130 Fourier transformations. http://id.loc.gov/authorities/subjects/sh85051094 Variétés abéliennes. Transformations de Fourier. MATHEMATICS Geometry Algebraic. bisacsh Abelian varieties fast Fourier transformations fast Abelsche Mannigfaltigkeit gnd http://d-nb.info/gnd/4140992-9 Thetafunktion gnd http://d-nb.info/gnd/4185175-4 Fourier-Transformation gnd http://d-nb.info/gnd/4018014-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85000130 http://id.loc.gov/authorities/subjects/sh85051094 http://d-nb.info/gnd/4140992-9 http://d-nb.info/gnd/4185175-4 http://d-nb.info/gnd/4018014-1 |
title | Abelian varieties, theta functions, and the Fourier transform / |
title_auth | Abelian varieties, theta functions, and the Fourier transform / |
title_exact_search | Abelian varieties, theta functions, and the Fourier transform / |
title_full | Abelian varieties, theta functions, and the Fourier transform / Alexander Polishchuk. |
title_fullStr | Abelian varieties, theta functions, and the Fourier transform / Alexander Polishchuk. |
title_full_unstemmed | Abelian varieties, theta functions, and the Fourier transform / Alexander Polishchuk. |
title_short | Abelian varieties, theta functions, and the Fourier transform / |
title_sort | abelian varieties theta functions and the fourier transform |
topic | Abelian varieties. http://id.loc.gov/authorities/subjects/sh85000130 Fourier transformations. http://id.loc.gov/authorities/subjects/sh85051094 Variétés abéliennes. Transformations de Fourier. MATHEMATICS Geometry Algebraic. bisacsh Abelian varieties fast Fourier transformations fast Abelsche Mannigfaltigkeit gnd http://d-nb.info/gnd/4140992-9 Thetafunktion gnd http://d-nb.info/gnd/4185175-4 Fourier-Transformation gnd http://d-nb.info/gnd/4018014-1 |
topic_facet | Abelian varieties. Fourier transformations. Variétés abéliennes. Transformations de Fourier. MATHEMATICS Geometry Algebraic. Abelian varieties Fourier transformations Abelsche Mannigfaltigkeit Thetafunktion Fourier-Transformation Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120692 |
work_keys_str_mv | AT polishchukalexander abelianvarietiesthetafunctionsandthefouriertransform |