Soliton equations and their algebro-geometric solutions.: Volume I, (1 + 1)-dimensional continuous models /
The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classi...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2003.
|
Schriftenreihe: | Cambridge studies in advanced mathematics ;
79. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text. |
Beschreibung: | 1 online resource (1 volume) : illustrations |
Bibliographie: | Includes bibliographical references (v. 1, pages 469-499) and index. |
ISBN: | 0511066570 9780511066573 1280417757 9781280417757 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm57183247 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 041207s2003 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCG |d OCLCQ |d OCLCO |d OCLCQ |d IDEBK |d OCLCA |d OCLCF |d NLGGC |d OCLCQ |d STF |d VTS |d AGLDB |d G3B |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 814388854 |a 819633447 |a 824547420 | ||
020 | |a 0511066570 |q (electronic bk.) | ||
020 | |a 9780511066573 |q (electronic bk.) | ||
020 | |a 1280417757 | ||
020 | |a 9781280417757 | ||
035 | |a (OCoLC)57183247 |z (OCoLC)814388854 |z (OCoLC)819633447 |z (OCoLC)824547420 | ||
050 | 4 | |a QC20.7.D5 |b G47eb vol. 1 | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
072 | 7 | |a PBWR |2 bicssc | |
082 | 7 | |a 530.15/5355 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Gesztesy, Fritz, |d 1953- |1 https://id.oclc.org/worldcat/entity/E39PBJcwwDXTvRFDB9qkbYWbh3 |0 http://id.loc.gov/authorities/names/n95066607 | |
245 | 1 | 0 | |a Soliton equations and their algebro-geometric solutions. |n Volume I, |p (1 + 1)-dimensional continuous models / |c Fritz Gesztesy, Helge Holden. |
246 | 3 | 0 | |a (1 + 1)-dimensional continuous models |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2003. | ||
300 | |a 1 online resource (1 volume) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics ; |v 79 | |
504 | |a Includes bibliographical references (v. 1, pages 469-499) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text. | ||
650 | 0 | |a Differential equations, Nonlinear |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85037908 | |
650 | 0 | |a Solitons. |0 http://id.loc.gov/authorities/subjects/sh85124672 | |
650 | 6 | |a Équations différentielles non linéaires |x Solutions numériques. | |
650 | 6 | |a Solitons. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Differential equations, Nonlinear |x Numerical solutions |2 fast | |
650 | 7 | |a Solitons |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Holden, H. |q (Helge), |d 1956- |1 https://id.oclc.org/worldcat/entity/E39PBJxCBWycwFk4C7mT7qKWXd |0 http://id.loc.gov/authorities/names/n88262161 | |
776 | 0 | 8 | |i Print version: |a Gesztesy, Fritz, 1953- |t Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models. |d Cambridge, UK ; New York : Cambridge University Press, 2003 |z 0521753074 |w (DLC) 2002074069 |w (OCoLC)50253271 |
830 | 0 | |a Cambridge studies in advanced mathematics ; |v 79. |0 http://id.loc.gov/authorities/names/n84708314 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120684 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 120684 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 41775 | ||
938 | |a YBP Library Services |b YANK |n 2301411 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm57183247 |
---|---|
_version_ | 1816881622276898817 |
adam_text | |
any_adam_object | |
author | Gesztesy, Fritz, 1953- |
author2 | Holden, H. (Helge), 1956- |
author2_role | |
author2_variant | h h hh |
author_GND | http://id.loc.gov/authorities/names/n95066607 http://id.loc.gov/authorities/names/n88262161 |
author_facet | Gesztesy, Fritz, 1953- Holden, H. (Helge), 1956- |
author_role | |
author_sort | Gesztesy, Fritz, 1953- |
author_variant | f g fg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.D5 G47eb vol. 1 |
callnumber-search | QC20.7.D5 G47eb vol. 1 |
callnumber-sort | QC 220.7 D5 G47 EB VOL 11 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)57183247 |
dewey-full | 530.15/5355 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15/5355 |
dewey-search | 530.15/5355 |
dewey-sort | 3530.15 45355 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04122cam a22005894a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm57183247 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">041207s2003 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">AGLDB</subfield><subfield code="d">G3B</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">814388854</subfield><subfield code="a">819633447</subfield><subfield code="a">824547420</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511066570</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511066573</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280417757</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280417757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57183247</subfield><subfield code="z">(OCoLC)814388854</subfield><subfield code="z">(OCoLC)819633447</subfield><subfield code="z">(OCoLC)824547420</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.D5</subfield><subfield code="b">G47eb vol. 1</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBWR</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.15/5355</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gesztesy, Fritz,</subfield><subfield code="d">1953-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJcwwDXTvRFDB9qkbYWbh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n95066607</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Soliton equations and their algebro-geometric solutions.</subfield><subfield code="n">Volume I,</subfield><subfield code="p">(1 + 1)-dimensional continuous models /</subfield><subfield code="c">Fritz Gesztesy, Helge Holden.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">(1 + 1)-dimensional continuous models</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 volume) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">79</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (v. 1, pages 469-499) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037908</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solitons.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124672</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles non linéaires</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Solitons.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Nonlinear</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holden, H.</subfield><subfield code="q">(Helge),</subfield><subfield code="d">1956-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxCBWycwFk4C7mT7qKWXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88262161</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gesztesy, Fritz, 1953-</subfield><subfield code="t">Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2003</subfield><subfield code="z">0521753074</subfield><subfield code="w">(DLC) 2002074069</subfield><subfield code="w">(OCoLC)50253271</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">79.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84708314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120684</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">120684</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">41775</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2301411</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocm57183247 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:39Z |
institution | BVB |
isbn | 0511066570 9780511066573 1280417757 9781280417757 |
language | English |
oclc_num | 57183247 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 volume) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge studies in advanced mathematics ; |
series2 | Cambridge studies in advanced mathematics ; |
spelling | Gesztesy, Fritz, 1953- https://id.oclc.org/worldcat/entity/E39PBJcwwDXTvRFDB9qkbYWbh3 http://id.loc.gov/authorities/names/n95066607 Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models / Fritz Gesztesy, Helge Holden. (1 + 1)-dimensional continuous models Cambridge, UK ; New York : Cambridge University Press, 2003. 1 online resource (1 volume) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge studies in advanced mathematics ; 79 Includes bibliographical references (v. 1, pages 469-499) and index. Print version record. The focus of this book is on algebro-geometric solutions of completely integrable nonlinear partial differential equations in (1+1)-dimensions, also known as soliton equations. Explicitly treated integrable models include the KdV, AKNS, sine-Gordon, and Camassa-Holm hierarchies as well as the classical massive Thirring system. An extensive treatment of the class of algebro-geometric solutions in the stationary as well as time-dependent contexts is provided. The formalism presented includes trace formulas, Dubrovin-type initial value problems, Baker-Akhiezer functions, and theta function representations of all relevant quantities involved. The book uses techniques from the theory of differential equations, spectral analysis, and elements of algebraic geometry (most notably, the theory of compact Riemann surfaces). The presentation is rigorous, detailed, and self-contained, with ample background material provided in various appendices. Detailed notes for each chapter together with an exhaustive bibliography enhance the presentation offered in the main text. Differential equations, Nonlinear Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037908 Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Équations différentielles non linéaires Solutions numériques. Solitons. SCIENCE Physics Mathematical & Computational. bisacsh Differential equations, Nonlinear Numerical solutions fast Solitons fast Electronic books. Holden, H. (Helge), 1956- https://id.oclc.org/worldcat/entity/E39PBJxCBWycwFk4C7mT7qKWXd http://id.loc.gov/authorities/names/n88262161 Print version: Gesztesy, Fritz, 1953- Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models. Cambridge, UK ; New York : Cambridge University Press, 2003 0521753074 (DLC) 2002074069 (OCoLC)50253271 Cambridge studies in advanced mathematics ; 79. http://id.loc.gov/authorities/names/n84708314 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120684 Volltext |
spellingShingle | Gesztesy, Fritz, 1953- Soliton equations and their algebro-geometric solutions. Cambridge studies in advanced mathematics ; Differential equations, Nonlinear Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037908 Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Équations différentielles non linéaires Solutions numériques. Solitons. SCIENCE Physics Mathematical & Computational. bisacsh Differential equations, Nonlinear Numerical solutions fast Solitons fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037908 http://id.loc.gov/authorities/subjects/sh85124672 |
title | Soliton equations and their algebro-geometric solutions. |
title_alt | (1 + 1)-dimensional continuous models |
title_auth | Soliton equations and their algebro-geometric solutions. |
title_exact_search | Soliton equations and their algebro-geometric solutions. |
title_full | Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models / Fritz Gesztesy, Helge Holden. |
title_fullStr | Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models / Fritz Gesztesy, Helge Holden. |
title_full_unstemmed | Soliton equations and their algebro-geometric solutions. Volume I, (1 + 1)-dimensional continuous models / Fritz Gesztesy, Helge Holden. |
title_short | Soliton equations and their algebro-geometric solutions. |
title_sort | soliton equations and their algebro geometric solutions 1 1 dimensional continuous models |
topic | Differential equations, Nonlinear Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037908 Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Équations différentielles non linéaires Solutions numériques. Solitons. SCIENCE Physics Mathematical & Computational. bisacsh Differential equations, Nonlinear Numerical solutions fast Solitons fast |
topic_facet | Differential equations, Nonlinear Numerical solutions. Solitons. Équations différentielles non linéaires Solutions numériques. SCIENCE Physics Mathematical & Computational. Differential equations, Nonlinear Numerical solutions Solitons Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=120684 |
work_keys_str_mv | AT gesztesyfritz solitonequationsandtheiralgebrogeometricsolutionsvolumei AT holdenh solitonequationsandtheiralgebrogeometricsolutionsvolumei AT gesztesyfritz 11dimensionalcontinuousmodels AT holdenh 11dimensionalcontinuousmodels |